Respuesta:
Explicación paso a paso:
[tex]x^{2} -5x-14=0[/tex]
Ecuación de la forma [tex]ax^{2} +bx+c=0[/tex]
[tex]a= 1 ; b = -5 ; c = -14[/tex]
Fórmula general:
[tex]x = \frac{-b\frac{+}{}\sqrt{b^{2} -4ac} }{2a}[/tex]
[tex]x = \frac{-(-5)\frac{+}{} \sqrt{(-5)^{2}-4(1)(-14) } }{2(1)} = \frac{5\frac{+}{} \sqrt{25+56} }{2} = \frac{5\frac{+}{} \sqrt{81} }{2}[/tex]
[tex]x = \frac{5 \frac{+}{} 9}{2}[/tex]
[tex]x_{1} = \frac{5+9}{2} = \frac{14}{2} = 7[/tex] ; [tex]x_{2} = \frac{5-9}{2} = \frac{-4}{2} = -2[/tex]
RESPUESTA:
[tex]x_{1} = 7[/tex] ; [tex]x_{2} = -2[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Respuesta:
Explicación paso a paso:
[tex]x^{2} -5x-14=0[/tex]
Ecuación de la forma [tex]ax^{2} +bx+c=0[/tex]
[tex]a= 1 ; b = -5 ; c = -14[/tex]
Fórmula general:
[tex]x = \frac{-b\frac{+}{}\sqrt{b^{2} -4ac} }{2a}[/tex]
[tex]x = \frac{-(-5)\frac{+}{} \sqrt{(-5)^{2}-4(1)(-14) } }{2(1)} = \frac{5\frac{+}{} \sqrt{25+56} }{2} = \frac{5\frac{+}{} \sqrt{81} }{2}[/tex]
[tex]x = \frac{5 \frac{+}{} 9}{2}[/tex]
[tex]x_{1} = \frac{5+9}{2} = \frac{14}{2} = 7[/tex] ; [tex]x_{2} = \frac{5-9}{2} = \frac{-4}{2} = -2[/tex]
RESPUESTA:
[tex]x_{1} = 7[/tex] ; [tex]x_{2} = -2[/tex]