Respuesta:
∫(x + 4)(x + 5)dx =[tex]\frac{x^{3} }{3}[/tex]+[tex]\frac{9x^{2} }{2} +20x+c[/tex]
Explicación:
[tex]\bold{\huge{\blue{\star{ \:Hola\star{}}}}}[/tex]
[tex]\large{\green{\underline{\texttt{Integral}}}}[/tex]
【Rpta.】[tex]\bf{\red{\frac{x^{3} }{3} }}+\frac{9x^{2} }{2} +20x+C[/tex]
[tex]{\hspace{50 pt}\above 1.2 pt}\boldsymbol{\mathsf{Procedimiento}}{\hspace{50 pt}\above 1.2 pt}[/tex]
[tex]\textbf{RESOLVEMOS:}[/tex]
Expandir [tex]\sf{ {\red{(x+4)(x+5): }} \: { x^{2} +9x+20}}[/tex]
∫ x² + 9x + 20dx
Aplicar la regla de la suma
∫ x² dx + ∫ 9xdx + ∫ 20dx
____________________
[tex]\bf{\red{\frac{x^{3}}{3} +\frac{9x^{2} }{2} +20x }}[/tex]
Agregar constante a la solución
[tex]\bf{\blue{\frac{x^{3} }{3}+\frac{9x^{2} }{2} +20x+C }}[/tex]
Espero Haberte ayudado
Saludos ⛥
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Respuesta:
∫(x + 4)(x + 5)dx =[tex]\frac{x^{3} }{3}[/tex]+[tex]\frac{9x^{2} }{2} +20x+c[/tex]
Explicación:
Verified answer
[tex]\bold{\huge{\blue{\star{ \:Hola\star{}}}}}[/tex]
[tex]\large{\green{\underline{\texttt{Integral}}}}[/tex]
【Rpta.】[tex]\bf{\red{\frac{x^{3} }{3} }}+\frac{9x^{2} }{2} +20x+C[/tex]
[tex]{\hspace{50 pt}\above 1.2 pt}\boldsymbol{\mathsf{Procedimiento}}{\hspace{50 pt}\above 1.2 pt}[/tex]
[tex]\textbf{RESOLVEMOS:}[/tex]
Expandir [tex]\sf{ {\red{(x+4)(x+5): }} \: { x^{2} +9x+20}}[/tex]
∫ x² + 9x + 20dx
Aplicar la regla de la suma
∫ x² dx + ∫ 9xdx + ∫ 20dx
____________________
[tex]\bf{\red{\frac{x^{3}}{3} +\frac{9x^{2} }{2} +20x }}[/tex]
Agregar constante a la solución
[tex]\bf{\blue{\frac{x^{3} }{3}+\frac{9x^{2} }{2} +20x+C }}[/tex]
Espero Haberte ayudado
Saludos ⛥