[tex](x-\sqrt{3})(x-\sqrt{3})-(x+\sqrt{3})(x+\sqrt{3})-\sqrt{12}=\\\\=x^{2}-\sqrt{3}x - \sqrt{3}x + 3 - (x^{2}+\sqrt{3}x+\sqrt{3}x+3) - \sqrt{4\cdot3}=\\\\=x^{2}-2\sqrt{3}x +3-(x^{2}+2\sqrt{3}x+3) - \sqrt{4}\cdot\sqrt{3}=\\\\=x^{2}-2\sqrt{3}x+3-x^{2}-2\sqrt{3}x - 3 -2\sqrt{3}=\\\\=\underline{-4\sqrt{3}x-2\sqrt{3}}[/tex]
[tex]Lub\\(x-\sqrt{3})(x-\sqrt{3})-(x+\sqrt{3})(x+\sqrt{3})-\sqrt{12}=\\\\=(x-\sqrt{3})^{2}-(x+\sqrt{3})^{2}-\sqrt{4\cdot3}=\\\\=x^{2}-2\sqrt{3}x+3-(x^{2}+2\sqrt{3}x + 3) -\sqrt{4}\cdot\sqrt{3}=\\\\=x^{2}-2\sqrt{3}x+3-x^{2}-2\sqrt{3}x-3 -2\sqrt{3}=\\\\=\underline{-4\sqrt{3}x-2\sqrt{3}}[/tex]
Wyjaśnienie:
[tex](a+b)(c+d) = ac+ad+bc+bd\\\\(a-b)^{2} = a^{2}-2ab + b^{2}\\\\(a+b)^{2} = a^{2}+2ab + b^{2}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex](x-\sqrt{3})(x-\sqrt{3})-(x+\sqrt{3})(x+\sqrt{3})-\sqrt{12}=\\\\=x^{2}-\sqrt{3}x - \sqrt{3}x + 3 - (x^{2}+\sqrt{3}x+\sqrt{3}x+3) - \sqrt{4\cdot3}=\\\\=x^{2}-2\sqrt{3}x +3-(x^{2}+2\sqrt{3}x+3) - \sqrt{4}\cdot\sqrt{3}=\\\\=x^{2}-2\sqrt{3}x+3-x^{2}-2\sqrt{3}x - 3 -2\sqrt{3}=\\\\=\underline{-4\sqrt{3}x-2\sqrt{3}}[/tex]
[tex]Lub\\(x-\sqrt{3})(x-\sqrt{3})-(x+\sqrt{3})(x+\sqrt{3})-\sqrt{12}=\\\\=(x-\sqrt{3})^{2}-(x+\sqrt{3})^{2}-\sqrt{4\cdot3}=\\\\=x^{2}-2\sqrt{3}x+3-(x^{2}+2\sqrt{3}x + 3) -\sqrt{4}\cdot\sqrt{3}=\\\\=x^{2}-2\sqrt{3}x+3-x^{2}-2\sqrt{3}x-3 -2\sqrt{3}=\\\\=\underline{-4\sqrt{3}x-2\sqrt{3}}[/tex]
Wyjaśnienie:
[tex](a+b)(c+d) = ac+ad+bc+bd\\\\(a-b)^{2} = a^{2}-2ab + b^{2}\\\\(a+b)^{2} = a^{2}+2ab + b^{2}[/tex]