Jawab:
[tex]\displaystyle \frac{3x^2}{2}-2x-5\ln|x+2|+\ln|x-2|+C[/tex]
Penjelasan dengan langkah-langkah:
Because degrees of polynomial numerator greater than denominator, this problem solved by long division. (x - 2)(x + 2) = x² - 4
[tex]\begin{array}{ccccc} & 3x & -2\\\cline{2-5} x^2-4/ & 3x^3 & -2x^2 & -16x & +20\\ & 3x^3 & & -12x\\\cline{2-5} & & -2x^2 & -4x & +20\\ & & -2x^2 & & +8\\\cline{3-5} & & & -4x & +12\end{array}[/tex]
Definition of polynomial
f(x) = (divisor)(quotient) + remainder
In this case f(x) is dividend, so we can write
[tex]\displaystyle \rm{\frac{dividend}{divisor}=quotient+\frac{remainder}{divisor}}[/tex]
therefore
[tex]\displaystyle \frac{3x^3-2x^2-16x+20}{x^2-4}=3x-2+\frac{-4x+12}{x^2-4}[/tex]
Now perform partial fraction decomposition for [tex]\displaystyle \frac{-4x+12}{x^2-4}[/tex]
[tex]\begin{aligned}\frac{-4x+12}{(x+2)(x-2)}&\:=\frac{A}{x+2}+\frac{B}{x-2}\\-4x+12\:&=A(x-2)+B(x+2)\\-4x+12\:&=(A+B)x+(-2A+2B)\end{aligned}[/tex]
Find A and B
-A + B = 6
A + B = -4
_______
-2A = 10 → A = -5
then
-5 + B = -4 → B = 1
So
[tex]\displaystyle \frac{-4x+12}{(x+2)(x-2)}=-\frac{5}{x+2}+\frac{1}{x-2}[/tex]
and we get
[tex]\displaystyle \frac{3x^3-2x^2-16x+20}{x^2-4}=3x-2-\frac{5}{x+2}+\frac{1}{x-2}[/tex]
Solve this problem
[tex]\begin{aligned}\int \frac{3x^3-2x^2-16x+20}{(x-2)(x+2)}&\:=\int \left ( 3x-2-\frac{5}{x+2}+\frac{1}{x-2} \right )dx\\\:&=\frac{3}{2}x^2-2x-5\ln|x+2|+\ln|x-2|+C\end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
[tex]\displaystyle \frac{3x^2}{2}-2x-5\ln|x+2|+\ln|x-2|+C[/tex]
Penjelasan dengan langkah-langkah:
Because degrees of polynomial numerator greater than denominator, this problem solved by long division. (x - 2)(x + 2) = x² - 4
[tex]\begin{array}{ccccc} & 3x & -2\\\cline{2-5} x^2-4/ & 3x^3 & -2x^2 & -16x & +20\\ & 3x^3 & & -12x\\\cline{2-5} & & -2x^2 & -4x & +20\\ & & -2x^2 & & +8\\\cline{3-5} & & & -4x & +12\end{array}[/tex]
Definition of polynomial
f(x) = (divisor)(quotient) + remainder
In this case f(x) is dividend, so we can write
[tex]\displaystyle \rm{\frac{dividend}{divisor}=quotient+\frac{remainder}{divisor}}[/tex]
therefore
[tex]\displaystyle \frac{3x^3-2x^2-16x+20}{x^2-4}=3x-2+\frac{-4x+12}{x^2-4}[/tex]
Now perform partial fraction decomposition for [tex]\displaystyle \frac{-4x+12}{x^2-4}[/tex]
[tex]\begin{aligned}\frac{-4x+12}{(x+2)(x-2)}&\:=\frac{A}{x+2}+\frac{B}{x-2}\\-4x+12\:&=A(x-2)+B(x+2)\\-4x+12\:&=(A+B)x+(-2A+2B)\end{aligned}[/tex]
Find A and B
-A + B = 6
A + B = -4
_______
-2A = 10 → A = -5
then
A + B = -4
-5 + B = -4 → B = 1
So
[tex]\displaystyle \frac{-4x+12}{(x+2)(x-2)}=-\frac{5}{x+2}+\frac{1}{x-2}[/tex]
and we get
[tex]\displaystyle \frac{3x^3-2x^2-16x+20}{x^2-4}=3x-2-\frac{5}{x+2}+\frac{1}{x-2}[/tex]
Solve this problem
[tex]\begin{aligned}\int \frac{3x^3-2x^2-16x+20}{(x-2)(x+2)}&\:=\int \left ( 3x-2-\frac{5}{x+2}+\frac{1}{x-2} \right )dx\\\:&=\frac{3}{2}x^2-2x-5\ln|x+2|+\ln|x-2|+C\end{aligned}[/tex]