Jawab:
[tex]\displaystyle 5\ln|x+1|-\ln|x-3|+C[/tex]
Penjelasan dengan langkah-langkah:
Factorize the denominator and solve by partial fraction deconposition.
[tex]\displaystyle \int \frac{4(x-4)}{x^2-2x-3}~dx=\int \frac{4x-16}{(x+1)(x-3)}~dx[/tex]
Distinct linear factors
[tex]\begin{aligned}\frac{4x-16}{(x+1)(x-3)}&\:=\frac{A}{x+1}+\frac{B}{x-3}\\4x-16\:&=A(x-3)+B(x+1)\\4x-16\:&=(A+B)x+(-3A+B)\end{aligned}[/tex]
Find A and B
[tex]\displaystyle\left\{\begin{matrix}A+B=4\\ -3A+B=-16\end{matrix}\right.[/tex]
-3A + B = -16
A + B = 4
_________
-4A = -20 → A = 5
Substitute to A + B = 4 then B = -1 we get
[tex]\displaystyle \frac{4x-16}{(x+1)(x-3)}=\frac{5}{x+1}-\frac{1}{x-3}[/tex]
Solve the problem
[tex]\begin{aligned}\int \frac{4(x-4)}{x^2-2x-3}~dx&\:=\int \frac{4x-16}{(x+1)(x-3)}~dx\\\:&=\int \left ( \frac{5}{x+1}-\frac{1}{x-3} \right )dx\\\:&=5\ln|x+1|-\ln|x-3|+C\end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawab:
[tex]\displaystyle 5\ln|x+1|-\ln|x-3|+C[/tex]
Penjelasan dengan langkah-langkah:
Factorize the denominator and solve by partial fraction deconposition.
[tex]\displaystyle \int \frac{4(x-4)}{x^2-2x-3}~dx=\int \frac{4x-16}{(x+1)(x-3)}~dx[/tex]
Distinct linear factors
[tex]\begin{aligned}\frac{4x-16}{(x+1)(x-3)}&\:=\frac{A}{x+1}+\frac{B}{x-3}\\4x-16\:&=A(x-3)+B(x+1)\\4x-16\:&=(A+B)x+(-3A+B)\end{aligned}[/tex]
Find A and B
[tex]\displaystyle\left\{\begin{matrix}A+B=4\\ -3A+B=-16\end{matrix}\right.[/tex]
-3A + B = -16
A + B = 4
_________
-4A = -20 → A = 5
Substitute to A + B = 4 then B = -1 we get
[tex]\displaystyle \frac{4x-16}{(x+1)(x-3)}=\frac{5}{x+1}-\frac{1}{x-3}[/tex]
Solve the problem
[tex]\begin{aligned}\int \frac{4(x-4)}{x^2-2x-3}~dx&\:=\int \frac{4x-16}{(x+1)(x-3)}~dx\\\:&=\int \left ( \frac{5}{x+1}-\frac{1}{x-3} \right )dx\\\:&=5\ln|x+1|-\ln|x-3|+C\end{aligned}[/tex]