Odpowiedź:
f(x) = 1/[(√x + √(x - 1 )] dla x > 0 ∧ x - 1 > 0 ⇒ x > 0 ∧ x > 1 ⇒ x > 1
f(x) = [√x - √(x - 1)]/[(√x)² - (√(x - 1))²] = [√x - √(x - 1)]/(x - (x - 1)] =
= [√x - √(x - 1)]/(x - x + 1) = [√x - √(x - 1)]/1 = √x - √(x - 1)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
f(x) = 1/[(√x + √(x - 1 )] dla x > 0 ∧ x - 1 > 0 ⇒ x > 0 ∧ x > 1 ⇒ x > 1
f(x) = [√x - √(x - 1)]/[(√x)² - (√(x - 1))²] = [√x - √(x - 1)]/(x - (x - 1)] =
= [√x - √(x - 1)]/(x - x + 1) = [√x - √(x - 1)]/1 = √x - √(x - 1)