Odpowiedź:
[tex]log_x 2\sqrt{8} = 5[/tex] ⇔ x[tex]^5 = 2\sqrt{8}[/tex]
x[tex]^5 =[/tex] 2*2[tex]\sqrt{2}[/tex] = ( [tex]\sqrt{2} )^5[/tex]
x = [tex]\sqrt{2}[/tex]
=========
[tex]log_x \sqrt{5} = \frac{1}{4}[/tex] ⇔ x[tex]^{1/4} = \sqrt{5}[/tex]
( x[tex]^{1/4})^4 = ( \sqrt{5})^4[/tex]
x = 25
============
[tex]log_x \frac{1}{12} = - 2[/tex] ⇔ x[tex]^{-2} = \frac{1}{12}[/tex] ⇔ x² = 12 ⇔
⇔ x = [tex]\sqrt{12} = 2\sqrt{3}[/tex]
======================
Szczegółowe wyjaśnienie:
Zadanie w załącznikach
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź:
[tex]log_x 2\sqrt{8} = 5[/tex] ⇔ x[tex]^5 = 2\sqrt{8}[/tex]
x[tex]^5 =[/tex] 2*2[tex]\sqrt{2}[/tex] = ( [tex]\sqrt{2} )^5[/tex]
x = [tex]\sqrt{2}[/tex]
=========
[tex]log_x \sqrt{5} = \frac{1}{4}[/tex] ⇔ x[tex]^{1/4} = \sqrt{5}[/tex]
( x[tex]^{1/4})^4 = ( \sqrt{5})^4[/tex]
x = 25
============
[tex]log_x \frac{1}{12} = - 2[/tex] ⇔ x[tex]^{-2} = \frac{1}{12}[/tex] ⇔ x² = 12 ⇔
⇔ x = [tex]\sqrt{12} = 2\sqrt{3}[/tex]
======================
Szczegółowe wyjaśnienie:
Odpowiedź:
Zadanie w załącznikach
Szczegółowe wyjaśnienie: