Odpowiedź:
Szczegółowe wyjaśnienie:
y=ax+b
a)
[tex]\left \{ {{9 = 1a + b} \atop {-6 = -2a + b}} \right. \\\\[/tex] / *(-1)
[tex]\left \{ {{9 = 1a + b} \atop {6 = 2a - b}} \right. \\\\[/tex]
9+6 = 1a + 2a +b - b
15 = 3a/:3
a = 5
9 = 5+b
b = 9-5 = 4
y=5x+4
b)
[tex]\left \{ {{5 = 1a + b} \atop {11 = -2a + b}} \right. \\\\[/tex]/*(-1)
[tex]\left \{ {{5 = 1a + b} \atop {-11 = 2a - b}} \right. \\\\[/tex]
5-11 = 1a + 2a +b - b
-5 = 3a /:3
a = - [tex]\frac{5}{3}[/tex]
5 = - [tex]\frac{5}{3}[/tex] + b
b = 5 + [tex]\frac{5}{3}[/tex] = 5 [tex]\frac{5}{3}[/tex] = 6 [tex]\frac{2}{3}[/tex]
y = [tex]-\frac{5}{3} x + 6\frac{2}{3}[/tex]
c)
[tex]\left \{ {{0 = -10a + b} \atop {7 = -6a + b}} \right. \\\\[/tex]/*(-1)
[tex]\left \{ {{0 = -10a + b} \atop {-7 = 6a - b}} \right. \\\\[/tex]
0-7=10a + 6a + b -b
-7 = 16a / :(16)
a = - [tex]\frac{7}{16}[/tex]
0 = -10 * (-[tex]\frac{7}{16}[/tex]) + b
0 = [tex]\frac{70}{16}[/tex] + b
b = [tex]\frac{70}{16}[/tex] = 4 [tex]\frac{6}{16}[/tex] = 4 [tex]\frac{3}{8}[/tex]
y = - [tex]\frac{7}{16}[/tex] + 4[tex]\frac{3}{8}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Szczegółowe wyjaśnienie:
y=ax+b
a)
[tex]\left \{ {{9 = 1a + b} \atop {-6 = -2a + b}} \right. \\\\[/tex] / *(-1)
[tex]\left \{ {{9 = 1a + b} \atop {6 = 2a - b}} \right. \\\\[/tex]
9+6 = 1a + 2a +b - b
15 = 3a/:3
a = 5
9 = 5+b
b = 9-5 = 4
y=5x+4
b)
[tex]\left \{ {{5 = 1a + b} \atop {11 = -2a + b}} \right. \\\\[/tex]/*(-1)
[tex]\left \{ {{5 = 1a + b} \atop {-11 = 2a - b}} \right. \\\\[/tex]
5-11 = 1a + 2a +b - b
-5 = 3a /:3
a = - [tex]\frac{5}{3}[/tex]
5 = - [tex]\frac{5}{3}[/tex] + b
b = 5 + [tex]\frac{5}{3}[/tex] = 5 [tex]\frac{5}{3}[/tex] = 6 [tex]\frac{2}{3}[/tex]
y = [tex]-\frac{5}{3} x + 6\frac{2}{3}[/tex]
c)
[tex]\left \{ {{0 = -10a + b} \atop {7 = -6a + b}} \right. \\\\[/tex]/*(-1)
[tex]\left \{ {{0 = -10a + b} \atop {-7 = 6a - b}} \right. \\\\[/tex]
0-7=10a + 6a + b -b
-7 = 16a / :(16)
a = - [tex]\frac{7}{16}[/tex]
0 = -10 * (-[tex]\frac{7}{16}[/tex]) + b
0 = [tex]\frac{70}{16}[/tex] + b
b = [tex]\frac{70}{16}[/tex] = 4 [tex]\frac{6}{16}[/tex] = 4 [tex]\frac{3}{8}[/tex]
y = - [tex]\frac{7}{16}[/tex] + 4[tex]\frac{3}{8}[/tex]