Odpowiedź:
a - przyprostokątna na przeciw kąta α = 9
c - przeciwprostokątna = 41
b - przyprostokątna na przeciw kąta β = √(c² - a²) = √(41² - 9²) =
= √( 1681 - 81) = √1600 = 40
sinα = a/c = 9/41
cosα = b/c = 40/41
tgα = a/b = 9/40
ctgα = 1/tgα = 40/9 = 4 4/9
sinβ = b/c = 40/41
cosβ = a/c = 9/41
tgβ = b/a = 40/9 = 4 4/9
ctgβ = 1/tgβ = 9/40
b = 9
c = 41
więc
a² + b² = c²
a² + 9² = 41²
a² = 1681 - 81 = 1600
a = [tex]\sqrt{1600} = 40[/tex]
Mamy
sin α = [tex]\frac{a}{c} = \frac{40}{41}[/tex] cos α = [tex]\frac{b}{c} = \frac{9}{41}[/tex] tg α = [tex]\frac{a}{b} = \frac{40}{9}[/tex] ctg α = [tex]\frac{b}{a} = \frac{9}{40}[/tex]
oraz
sin β = [tex]\frac{b}{c} = \frac{9}{41}[/tex] cos β = [tex]\frac{a}{c} = \frac{40}{41}[/tex] tg β = [tex]\frac{b}{a} =\frac{9}{40}[/tex] ctg β = [tex]\frac{a}{b} = \frac{40}{9}[/tex]
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
a - przyprostokątna na przeciw kąta α = 9
c - przeciwprostokątna = 41
b - przyprostokątna na przeciw kąta β = √(c² - a²) = √(41² - 9²) =
= √( 1681 - 81) = √1600 = 40
sinα = a/c = 9/41
cosα = b/c = 40/41
tgα = a/b = 9/40
ctgα = 1/tgα = 40/9 = 4 4/9
sinβ = b/c = 40/41
cosβ = a/c = 9/41
tgβ = b/a = 40/9 = 4 4/9
ctgβ = 1/tgβ = 9/40
Verified answer
Odpowiedź:
b = 9
c = 41
więc
a² + b² = c²
a² + 9² = 41²
a² = 1681 - 81 = 1600
a = [tex]\sqrt{1600} = 40[/tex]
Mamy
sin α = [tex]\frac{a}{c} = \frac{40}{41}[/tex] cos α = [tex]\frac{b}{c} = \frac{9}{41}[/tex] tg α = [tex]\frac{a}{b} = \frac{40}{9}[/tex] ctg α = [tex]\frac{b}{a} = \frac{9}{40}[/tex]
oraz
sin β = [tex]\frac{b}{c} = \frac{9}{41}[/tex] cos β = [tex]\frac{a}{c} = \frac{40}{41}[/tex] tg β = [tex]\frac{b}{a} =\frac{9}{40}[/tex] ctg β = [tex]\frac{a}{b} = \frac{40}{9}[/tex]
Szczegółowe wyjaśnienie: