Odpowiedź:
[tex]a)\\f(x)=-log_3(x+3)+2\\x+3 > 0\quad\Rightarrow D=(-3,+\infty)\\-log_3(x+3)+2=0/\cdot(-1)\\log_3(x+3)=2\quad \Rightarrow 3^2=x+3\quad \Rightarrow x=6\\M_0=\{6\}\\b)\\f(x)=log_3(x+3)+2\\x+3 > 0\quad\Rightarrow D=(-3,+\infty)\\log_3(x+3)+2=0\\\displaystyle log_3(x+3)=-2\quad \Rightarrow 3^{-2}=x+3\quad \Rightarrow x=\frac{1}{9} -3=-\frac{26}{9} =-2\frac{8}{9} \\M_0=\{-\frac{26}{9} \}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]a)\\f(x)=-log_3(x+3)+2\\x+3 > 0\quad\Rightarrow D=(-3,+\infty)\\-log_3(x+3)+2=0/\cdot(-1)\\log_3(x+3)=2\quad \Rightarrow 3^2=x+3\quad \Rightarrow x=6\\M_0=\{6\}\\b)\\f(x)=log_3(x+3)+2\\x+3 > 0\quad\Rightarrow D=(-3,+\infty)\\log_3(x+3)+2=0\\\displaystyle log_3(x+3)=-2\quad \Rightarrow 3^{-2}=x+3\quad \Rightarrow x=\frac{1}{9} -3=-\frac{26}{9} =-2\frac{8}{9} \\M_0=\{-\frac{26}{9} \}[/tex]