Odpowiedź:
Szczegółowe wyjaśnienie:
[tex]F(x,y)=x^{3} +3xy+y^{2} \\F'_x=3x^{2} +3y\\F'_y=3x+2y\\F'_{xx}=6x\\\left\{\begin{array}{llc}F(x_0,y_0)=0\\F'_x(x_0,y_o)=0\\F'_y(x_0,y_0)\neq 0\quad\Rightarrow (x_0,y_0)\neq (0,0)\\\end{array} \right.\\\left\{\begin{array}{llc}x^3+3xy+y^{2}=0 \\3x^2+3y=0\quad \Rightarrow y=-x^{2} \end{array} \right.\\x^{3} +3x(-x^{2} )+(-x^{2} )^2=0\\x^{3} -3x^{3} +x^{4} =0\\x^{4} -2x^{3} =0\\x^{3} (x-2)=0\\x_1=0\quad \quad x_2=2\\y_1=0\qquad y_2=-4\\(0,0)\notin D\\(2,-4)\\[/tex]
[tex]\displaystyle I(x_0,y_0)=-\frac{F'_{xx}(x_0,y_0)}{F'_y(x_0,y_0)} \\I(2,-4)=-\frac{6\cdot2}{3\cdot2+2\cdot(-4)} =\frac{-12}{6-8} =6 > 0[/tex]
dla x=2 minimum lokalne równe -4
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Szczegółowe wyjaśnienie:
[tex]F(x,y)=x^{3} +3xy+y^{2} \\F'_x=3x^{2} +3y\\F'_y=3x+2y\\F'_{xx}=6x\\\left\{\begin{array}{llc}F(x_0,y_0)=0\\F'_x(x_0,y_o)=0\\F'_y(x_0,y_0)\neq 0\quad\Rightarrow (x_0,y_0)\neq (0,0)\\\end{array} \right.\\\left\{\begin{array}{llc}x^3+3xy+y^{2}=0 \\3x^2+3y=0\quad \Rightarrow y=-x^{2} \end{array} \right.\\x^{3} +3x(-x^{2} )+(-x^{2} )^2=0\\x^{3} -3x^{3} +x^{4} =0\\x^{4} -2x^{3} =0\\x^{3} (x-2)=0\\x_1=0\quad \quad x_2=2\\y_1=0\qquad y_2=-4\\(0,0)\notin D\\(2,-4)\\[/tex]
[tex]\displaystyle I(x_0,y_0)=-\frac{F'_{xx}(x_0,y_0)}{F'_y(x_0,y_0)} \\I(2,-4)=-\frac{6\cdot2}{3\cdot2+2\cdot(-4)} =\frac{-12}{6-8} =6 > 0[/tex]
dla x=2 minimum lokalne równe -4