Odpowiedź:
[tex]zad.~a\\\\\I.~~przypadek\\\\\huge\boxed{c=10~[j],~~\beta =60^{o},~~\gamma=90^{o},~~R=5~[j]}\\\\II.~~przypadek\\\\\huge\boxed{c=5~[j],~~\beta =120^{o},~~\gamma=30^{o},~~R=5~[j]}[/tex]
[tex]zad.~b\\\\\huge\boxed{b=15~[j],~~\beta =112^{o},~~\alpha =8^{o},~~R=\frac{14\sqrt{3} }{3} ~[j]}[/tex]
Szczegółowe wyjaśnienie:
[tex]\huge\boxed{~~\dfrac{a}{sin\alpha } =\dfrac{b}{sin\beta } =\dfrac{c}{sin \gamma} =2R~~}[/tex]
gdzie [tex]R~~\Rightarrow[/tex] to długość promienia okręgu opisanego na trójkącie.
rysunek pomocniczy ⇒ w załączniku
Wprowadzamy oznaczenia:
Dane:
Szukane:
[tex]\dfrac{b}{sin\beta } =2R~~\land~~2R=10~[j]~~\land~~b=5\sqrt{3} ~[j]\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow\\\\\dfrac{5\sqrt{3}}{sin\beta } =10\\\\10sin\beta =5\sqrt{3}~~\mid \div 10\\\\sin\beta =\dfrac{\sqrt{3} }{2} \Rightarrow~~\huge\boxed{~~\beta =60^{o}~~}[/tex]
Na podstawie wzorów redukcyjnych: [tex]sin(180^{o}-\alpha )=sin\alpha[/tex]
[tex]sin60^{o}=sin(180^{o}-120^{o})=sin120^{o}~~\Rightarrow~~\beta =120^{o}[/tex].
Rozpatrywać będziemy dwa przypadki.
[tex]\alpha +\beta +\gamma =180^{o}~~\land~~\alpha =30^{o}~~\land~~\beta =60^{o}\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow\\\\~~~~~~~~~~~~~~~~\huge\boxed{~~\gamma=90^{o}~~}[/tex]
[tex]\dfrac{a}{sin\alpha } =2R~~\land~~a=5~[j]~~\land~~\alpha =30^{o}~~\land~~sin30^{o}=\dfrac{1}{2} \\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow~\\\\2R=\dfrac{5}{\frac{1}{2} } \\\\2R=10~~\mid \div 2\\\\\huge\boxed{~~R=5~[j]~~}[/tex]
[tex]\dfrac{c}{sin\gamma} =2R~~\land~~2R=10~[j]~~\land~~\gamma=90^{o}~~\land~~sin90^{o}=1\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow~\\\\~~~~~~~~~~~~\huge\boxed{~~c=10~[j]~~}[/tex]
[tex]\alpha +\beta +\gamma =180^{o}~~\land~~\alpha =30^{o}~~\land~~\beta =120^{o}\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow\\\\~~~~~~~~~~~~~~~~\huge\boxed{~~\gamma=30^{o}~~}[/tex]
[tex]\alpha =30^{o},~~\beta =120^{o},~~\gamma=30^{o}~~\Rightarrow[/tex] trójkąt jest równoramienny.
[tex]\dfrac{c}{sin\gamma} =2R~~\land~~2R=10~[j]~~\land~~\gamma=30^{o}~~\land~~sin30^{o}=\frac{1}{2} \\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow~\\\\~~~~~~~~~~~~\huge\boxed{~~c=5~[j]~~}[/tex]
[tex]\cfrac{c}{sin\gamma} =2R~~\land~~c=14~[j]~~\land~~\gamma=60^{o}~~\sin60^{o}=\dfrac{\sqrt{3} }{2} \\\\\\2R=\dfrac{14}{ \frac{\sqrt{3} }{2} } \\\\\\2R=\dfrac{28}{\sqrt{3} } ~~\mid \div 2\\\\\\R=\dfrac{14}{\sqrt{3} }\cdot \dfrac{\sqrt{3} }{\sqrt{3} } \\ \\\\\huge\boxed{~~R=\dfrac{14\sqrt{3} }{3} ~[j]~~}[/tex]
[tex]\dfrac{a}{sin\alpha } =2R~~\land~~a=7~[j]~~\land~~2R=\dfrac{28}{\sqrt{3} } ~[j]\\\\~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow~\\\\\dfrac{7}{sin\alpha } =\dfrac{28}{\sqrt{3} }\\\\28sin\alpha =7\sqrt{3} ~~\mid \div 28\\\\sin\alpha =\dfrac{1}{4\sqrt{3} }\cdot \dfrac{\sqrt{3} }{\sqrt{3} } =\dfrac{\sqrt{3} }{12} \\\\sin\alpha \approx 0,1442\\\\~~~~~~~~\Downarrow\\\\\huge\boxed{~~\alpha =8^{o}~~}[/tex]
[tex]\alpha +\beta + \gamma=180^{o}~~\land~~\alpha =8^{o}~~\land~~\gamma=60^{o}\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow\\\\~~~~~~~~~~~~~~~~\huge\boxed{~~\beta =112^{o}~~}[/tex]
[tex]\dfrac{b}{sin\beta } =2R~~\land~~2R=\dfrac{28}{\sqrt{3} } ~[j]~~~\land~~\beta =112^{o}~~\land~~sin112^{o}=0,9271\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow~\\\\\dfrac{b}{0,9271} =\dfrac{28}{\sqrt{3} }~~\land~~\sqrt{3} =1,73\\\\1,73b=25,9588~~\mid \div 1,73\\\\\huge\boxed{~~b=15~[j]~~}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]zad.~a\\\\\I.~~przypadek\\\\\huge\boxed{c=10~[j],~~\beta =60^{o},~~\gamma=90^{o},~~R=5~[j]}\\\\II.~~przypadek\\\\\huge\boxed{c=5~[j],~~\beta =120^{o},~~\gamma=30^{o},~~R=5~[j]}[/tex]
[tex]zad.~b\\\\\huge\boxed{b=15~[j],~~\beta =112^{o},~~\alpha =8^{o},~~R=\frac{14\sqrt{3} }{3} ~[j]}[/tex]
Szczegółowe wyjaśnienie:
[tex]\huge\boxed{~~\dfrac{a}{sin\alpha } =\dfrac{b}{sin\beta } =\dfrac{c}{sin \gamma} =2R~~}[/tex]
gdzie [tex]R~~\Rightarrow[/tex] to długość promienia okręgu opisanego na trójkącie.
Rozwiązanie:
rysunek pomocniczy ⇒ w załączniku
Wprowadzamy oznaczenia:
Zad. a)
Dane:
Szukane:
[tex]\dfrac{b}{sin\beta } =2R~~\land~~2R=10~[j]~~\land~~b=5\sqrt{3} ~[j]\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow\\\\\dfrac{5\sqrt{3}}{sin\beta } =10\\\\10sin\beta =5\sqrt{3}~~\mid \div 10\\\\sin\beta =\dfrac{\sqrt{3} }{2} \Rightarrow~~\huge\boxed{~~\beta =60^{o}~~}[/tex]
Na podstawie wzorów redukcyjnych: [tex]sin(180^{o}-\alpha )=sin\alpha[/tex]
[tex]sin60^{o}=sin(180^{o}-120^{o})=sin120^{o}~~\Rightarrow~~\beta =120^{o}[/tex].
Rozpatrywać będziemy dwa przypadki.
I. przypadek gdy: [tex]\boxed{\boxed{~~\alpha=30^o,\ \beta=60^o,\ a=5,\ b=5\sqrt3~~}}[/tex]
[tex]\alpha +\beta +\gamma =180^{o}~~\land~~\alpha =30^{o}~~\land~~\beta =60^{o}\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow\\\\~~~~~~~~~~~~~~~~\huge\boxed{~~\gamma=90^{o}~~}[/tex]
[tex]\dfrac{a}{sin\alpha } =2R~~\land~~a=5~[j]~~\land~~\alpha =30^{o}~~\land~~sin30^{o}=\dfrac{1}{2} \\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow~\\\\2R=\dfrac{5}{\frac{1}{2} } \\\\2R=10~~\mid \div 2\\\\\huge\boxed{~~R=5~[j]~~}[/tex]
[tex]\dfrac{c}{sin\gamma} =2R~~\land~~2R=10~[j]~~\land~~\gamma=90^{o}~~\land~~sin90^{o}=1\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow~\\\\~~~~~~~~~~~~\huge\boxed{~~c=10~[j]~~}[/tex]
II. przypadek gdy: [tex]\boxed{\boxed{~~\alpha=30^o,\ \beta=120^o,\ a=5,\ b=5\sqrt3~~}}[/tex]
[tex]\alpha +\beta +\gamma =180^{o}~~\land~~\alpha =30^{o}~~\land~~\beta =120^{o}\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow\\\\~~~~~~~~~~~~~~~~\huge\boxed{~~\gamma=30^{o}~~}[/tex]
[tex]\alpha =30^{o},~~\beta =120^{o},~~\gamma=30^{o}~~\Rightarrow[/tex] trójkąt jest równoramienny.
[tex]\dfrac{a}{sin\alpha } =2R~~\land~~a=5~[j]~~\land~~\alpha =30^{o}~~\land~~sin30^{o}=\dfrac{1}{2} \\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow~\\\\2R=\dfrac{5}{\frac{1}{2} } \\\\2R=10~~\mid \div 2\\\\\huge\boxed{~~R=5~[j]~~}[/tex]
[tex]\dfrac{c}{sin\gamma} =2R~~\land~~2R=10~[j]~~\land~~\gamma=30^{o}~~\land~~sin30^{o}=\frac{1}{2} \\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow~\\\\~~~~~~~~~~~~\huge\boxed{~~c=5~[j]~~}[/tex]
Zad. b)
Dane:
Szukane:
[tex]\cfrac{c}{sin\gamma} =2R~~\land~~c=14~[j]~~\land~~\gamma=60^{o}~~\sin60^{o}=\dfrac{\sqrt{3} }{2} \\\\\\2R=\dfrac{14}{ \frac{\sqrt{3} }{2} } \\\\\\2R=\dfrac{28}{\sqrt{3} } ~~\mid \div 2\\\\\\R=\dfrac{14}{\sqrt{3} }\cdot \dfrac{\sqrt{3} }{\sqrt{3} } \\ \\\\\huge\boxed{~~R=\dfrac{14\sqrt{3} }{3} ~[j]~~}[/tex]
[tex]\dfrac{a}{sin\alpha } =2R~~\land~~a=7~[j]~~\land~~2R=\dfrac{28}{\sqrt{3} } ~[j]\\\\~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow~\\\\\dfrac{7}{sin\alpha } =\dfrac{28}{\sqrt{3} }\\\\28sin\alpha =7\sqrt{3} ~~\mid \div 28\\\\sin\alpha =\dfrac{1}{4\sqrt{3} }\cdot \dfrac{\sqrt{3} }{\sqrt{3} } =\dfrac{\sqrt{3} }{12} \\\\sin\alpha \approx 0,1442\\\\~~~~~~~~\Downarrow\\\\\huge\boxed{~~\alpha =8^{o}~~}[/tex]
[tex]\alpha +\beta + \gamma=180^{o}~~\land~~\alpha =8^{o}~~\land~~\gamma=60^{o}\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow\\\\~~~~~~~~~~~~~~~~\huge\boxed{~~\beta =112^{o}~~}[/tex]
[tex]\dfrac{b}{sin\beta } =2R~~\land~~2R=\dfrac{28}{\sqrt{3} } ~[j]~~~\land~~\beta =112^{o}~~\land~~sin112^{o}=0,9271\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\Downarrow~\\\\\dfrac{b}{0,9271} =\dfrac{28}{\sqrt{3} }~~\land~~\sqrt{3} =1,73\\\\1,73b=25,9588~~\mid \div 1,73\\\\\huge\boxed{~~b=15~[j]~~}[/tex]