Postać ogólna funkcji kwadratowej:
y = ax² + bx + c
gdzie a ≠ 0 oraz b, c ∈ R
a)
f(x) = 4(x - 3)² - 20
f(x) = 4(x² - 2 · x · 3 + 3²) - 20
f(x) = 4(x² - 6x + 9) - 20
f(x) = 4x² - 24x + 36 - 20
f(x) = 4x² - 24x + 16
b)
f(x) = ¹/₂(x + 4)² - 6
f(x) = ¹/₂(x² + 2 · x · 4 + 4²) - 6
f(x) = ¹/₂(x² + 8x + 16) - 6
f(x) = ¹/₂x² + 4x + 8 - 6
f(x) = ¹/₂x² + 4x + 2
c)
f(x) = -5(x - 1)² + 1
f(x) = -5(x² - 2 · x · 1 + 1²) + 1
f(x) = -5(x² - 2x + 1) + 1
f(x) = -5x² + 10x - 5 + 1
f(x) = -5x² + 10x - 4
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Postać ogólna funkcji kwadratowej:
y = ax² + bx + c
gdzie a ≠ 0 oraz b, c ∈ R
a)
f(x) = 4(x - 3)² - 20
f(x) = 4(x² - 2 · x · 3 + 3²) - 20
f(x) = 4(x² - 6x + 9) - 20
f(x) = 4x² - 24x + 36 - 20
f(x) = 4x² - 24x + 16
b)
f(x) = ¹/₂(x + 4)² - 6
f(x) = ¹/₂(x² + 2 · x · 4 + 4²) - 6
f(x) = ¹/₂(x² + 8x + 16) - 6
f(x) = ¹/₂x² + 4x + 8 - 6
f(x) = ¹/₂x² + 4x + 2
c)
f(x) = -5(x - 1)² + 1
f(x) = -5(x² - 2 · x · 1 + 1²) + 1
f(x) = -5(x² - 2x + 1) + 1
f(x) = -5x² + 10x - 5 + 1
f(x) = -5x² + 10x - 4