Odpowiedź:
f ( x ) = x² - 6 x - 2
p = [tex]\frac{ - b}{2 a} = \frac{6}{2*1} = 3[/tex]
q = f ( 3) = 3² - 6*3 - 2 = 9 - 18 - 2 = - 11
C = ( 3, - 11 )
f( 1) = 1²- 6*1 - 2 = 1 - 8 = - 7
A = ( 1 , - 7 )
f ( 6 ) = 6² - 6*6 - 2 = - 2
B = ( 6, - 2)
więc
-->
AB = [ 6 - 1 , - 2 - (-7)] = [ 5, 5 ]
AC = [ 3 - 1, - 11 - ( -7 )] = [ 2 , - 4 ]
Pole Δ
P = 0,5 * I det ( AB , AC ) I = 0,5* I 5 *( - 4) - 5*2 I = 0,5* I -30 I = 0,5*30 = 15
================================================================
II sposób.
pr. AB
[tex]a_{AB} = \frac{- 2 - (-7)}{6 - 1} = 1[/tex]
y = x + b A = ( 1, - 7 )
- 7 = 1 +b
b = - 8
y = x - 8
lub x - y - 8 = 0 C = ( 3 , -11 )
h - odległość C od pr. AB
h = I 1 *3 - 1*( - 11 ) - 8 I : [tex]\sqrt{1^2 + ( - 1)^2}[/tex] = [tex]\frac{6}{\sqrt{2} } = 3\sqrt{2}[/tex]
I A B I² = ( 6 - 1)² + ( - 2 - (- 7))² = 25 + 25 = 25*2
I AB I = 5√2
P = 0,5* I AB I * h = 0,5* 5√2*3√2 = 15
=======================================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
f ( x ) = x² - 6 x - 2
p = [tex]\frac{ - b}{2 a} = \frac{6}{2*1} = 3[/tex]
q = f ( 3) = 3² - 6*3 - 2 = 9 - 18 - 2 = - 11
C = ( 3, - 11 )
f( 1) = 1²- 6*1 - 2 = 1 - 8 = - 7
A = ( 1 , - 7 )
f ( 6 ) = 6² - 6*6 - 2 = - 2
B = ( 6, - 2)
więc
-->
AB = [ 6 - 1 , - 2 - (-7)] = [ 5, 5 ]
-->
AC = [ 3 - 1, - 11 - ( -7 )] = [ 2 , - 4 ]
Pole Δ
P = 0,5 * I det ( AB , AC ) I = 0,5* I 5 *( - 4) - 5*2 I = 0,5* I -30 I = 0,5*30 = 15
================================================================
II sposób.
pr. AB
[tex]a_{AB} = \frac{- 2 - (-7)}{6 - 1} = 1[/tex]
y = x + b A = ( 1, - 7 )
więc
- 7 = 1 +b
b = - 8
y = x - 8
lub x - y - 8 = 0 C = ( 3 , -11 )
h - odległość C od pr. AB
h = I 1 *3 - 1*( - 11 ) - 8 I : [tex]\sqrt{1^2 + ( - 1)^2}[/tex] = [tex]\frac{6}{\sqrt{2} } = 3\sqrt{2}[/tex]
I A B I² = ( 6 - 1)² + ( - 2 - (- 7))² = 25 + 25 = 25*2
I AB I = 5√2
Pole Δ
P = 0,5* I AB I * h = 0,5* 5√2*3√2 = 15
=======================================
Szczegółowe wyjaśnienie: