z których korzystamy w zadaniu to:
[tex]\alpha\in(0^o,\,90^o)\quad \implies\quad\sin\alpha > 0,\ \cos\alpha > 0[/tex]
[tex]\Large\text{$\sin\alpha-\cos\alpha=\sin45^o-\cos45^o=\frac{\sqrt2}2-\frac{\sqrt2}2=0$}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Związki między funkcjami tego samego kąta
z których korzystamy w zadaniu to:
[tex]\alpha\in(0^o,\,90^o)\quad \implies\quad\sin\alpha > 0,\ \cos\alpha > 0[/tex]
[tex]\sin\alpha+\cos\alpha=\sqrt2\qquad\big/()^2\\\\ (\sin\alpha+\cos\alpha)=(\sqrt2)^2\\\\ \sin^2\alpha+2\sin\alpha\cos\alpha+\cos^2\alpha=2 \\\\ \sin^2\alpha+\cos^2\alpha+2\sin\alpha\cos\alpha=2 \\\\ 1+2\sin\alpha\cos\alpha=2\qquad\big/-1\\\\ 2\sin\alpha\cos\alpha=1\\\\\sin2\alpha=1 \quad\wedge\quad\alpha\in(0^o,\,90^o)\\\\ 2\alpha=90^o\\\\ \alpha=45^o[/tex]
[tex]\Large\text{$\sin\alpha-\cos\alpha=\sin45^o-\cos45^o=\frac{\sqrt2}2-\frac{\sqrt2}2=0$}[/tex]