[tex]Wysoko\'s\'c\ \ tr\'ojkata\ \ r\'ownobocznego\ \ obliczamy\ \ ze\ \ wzoru\ \ h=\frac{a\sqrt{3}}{2}\\\\\\a)\ \ a=4\\\\h=\dfrac{\not4^2\sqrt{3}}{\not2_{1}}=2\sqrt{3}\\\\\\b)\ \ a=7\\\\h=\dfrac{7\sqrt{3}}{2}\\\\\\c)\ \ a=12\\\\h=\dfrac{\not12^6\sqrt{3}}{\not2_{1}}=6\sqrt{3}\\\\\\d)\ \ a=\sqrt{3}\\\\h=\dfrac{\sqrt{3}\cdot\sqrt{3}}{2}=\dfrac{\sqrt{9}}{2}=\dfrac{3}{2}\\\\\\e)\ \ a=\sqrt{2}\\\\h=\dfrac{\sqrt{2}\cdot\sqrt{3}}{2}=\dfrac{\sqrt{2\cdot3}}{2}=\dfrac{\sqrt{6}}{2}[/tex]
[tex]f)\ \ a=2\sqrt{6}\\\\h=\dfrac{2\sqrt{6}\cdot\sqrt{3}}{2}=\dfrac{2\sqrt{6\cdot3}}{2}=\dfrac{\not2^1\sqrt{18}}{\not2_{1}}=\sqrt{18}=\sqrt{9\cdot2}=\sqrt{9}\cdot\sqrt{2}=3\sqrt{2}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]Wysoko\'s\'c\ \ tr\'ojkata\ \ r\'ownobocznego\ \ obliczamy\ \ ze\ \ wzoru\ \ h=\frac{a\sqrt{3}}{2}\\\\\\a)\ \ a=4\\\\h=\dfrac{\not4^2\sqrt{3}}{\not2_{1}}=2\sqrt{3}\\\\\\b)\ \ a=7\\\\h=\dfrac{7\sqrt{3}}{2}\\\\\\c)\ \ a=12\\\\h=\dfrac{\not12^6\sqrt{3}}{\not2_{1}}=6\sqrt{3}\\\\\\d)\ \ a=\sqrt{3}\\\\h=\dfrac{\sqrt{3}\cdot\sqrt{3}}{2}=\dfrac{\sqrt{9}}{2}=\dfrac{3}{2}\\\\\\e)\ \ a=\sqrt{2}\\\\h=\dfrac{\sqrt{2}\cdot\sqrt{3}}{2}=\dfrac{\sqrt{2\cdot3}}{2}=\dfrac{\sqrt{6}}{2}[/tex]
[tex]f)\ \ a=2\sqrt{6}\\\\h=\dfrac{2\sqrt{6}\cdot\sqrt{3}}{2}=\dfrac{2\sqrt{6\cdot3}}{2}=\dfrac{\not2^1\sqrt{18}}{\not2_{1}}=\sqrt{18}=\sqrt{9\cdot2}=\sqrt{9}\cdot\sqrt{2}=3\sqrt{2}[/tex]