Odpowiedź:
[tex]\displaystyle f'(x_0)= \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h} \qquad f'(1)= \lim_{h \to 0} \frac{f(1+h)-f(1)}{h} \\x_0=1\\f(x)=2x-\frac{1}{x} \quad x\neq 0\\f'(1)=\lim_{h \to 0}\frac{2(1+h)-\frac{1}{1+h}-(2\cdot1-\frac{1}{1}) }{h} =\lim_{h \to 0}\frac{2+2h-\frac{1}{1+h}-1 }{h} =\\=\lim_{h \to 0}\frac{1+2h-\frac{1}{1+h} }{h} =\lim_{h \to 0}\frac{\frac{1+h+2h(1+h)-1}{1+h} }{h} =\lim_{h \to 0}\frac{h+2h+2h^2}{h(1+h)} =\\=\lim_{h \to 0}\frac{2h^2+3h}{h(1+h)} =\lim_{h \to 0}\frac{h(2h+3)}{h(1+h)} =[/tex]
[tex]\displaystyle\lim_{h \to 0}\frac{2h+3}{1+h} =\frac{2\cdot0+3}{1+0} =3[/tex]
[tex]\displaystyle f(1)=2\cdot1-\frac{1}{1} =2-1=1\\\mbox{funkcja przechodzi przez punkt (1,1)}\\y= ax+b\\a=f'(1)=3\\y=3x+b\\1=3\cdot1+b\\b=-2\\\mbox{styczna ma rownanie}\\y=3x-2[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź:
[tex]\displaystyle f'(x_0)= \lim_{h \to 0} \frac{f(x_0+h)-f(x_0)}{h} \qquad f'(1)= \lim_{h \to 0} \frac{f(1+h)-f(1)}{h} \\x_0=1\\f(x)=2x-\frac{1}{x} \quad x\neq 0\\f'(1)=\lim_{h \to 0}\frac{2(1+h)-\frac{1}{1+h}-(2\cdot1-\frac{1}{1}) }{h} =\lim_{h \to 0}\frac{2+2h-\frac{1}{1+h}-1 }{h} =\\=\lim_{h \to 0}\frac{1+2h-\frac{1}{1+h} }{h} =\lim_{h \to 0}\frac{\frac{1+h+2h(1+h)-1}{1+h} }{h} =\lim_{h \to 0}\frac{h+2h+2h^2}{h(1+h)} =\\=\lim_{h \to 0}\frac{2h^2+3h}{h(1+h)} =\lim_{h \to 0}\frac{h(2h+3)}{h(1+h)} =[/tex]
[tex]\displaystyle\lim_{h \to 0}\frac{2h+3}{1+h} =\frac{2\cdot0+3}{1+0} =3[/tex]
[tex]\displaystyle f(1)=2\cdot1-\frac{1}{1} =2-1=1\\\mbox{funkcja przechodzi przez punkt (1,1)}\\y= ax+b\\a=f'(1)=3\\y=3x+b\\1=3\cdot1+b\\b=-2\\\mbox{styczna ma rownanie}\\y=3x-2[/tex]