muhammadhadyan
Standar deviasi merupakan ukuran penyebaran yang paling banyak digunakan. Semua gugus data dipertimbangkan sehingga lebih stabil dibandingkan dengan ukuran lainnya. Namun, apabila dalam gugus data tersebut terdapat nilai ekstrem, standar deviasi menjadi tidak sensitif lagi, sama halnya seperti mean. Standar Deviasi memiliki beberapa karakteristik khusus lainnya. SD tidak berubah apabila setiap unsur pada gugus datanya di tambahkan atau dikurangkan dengan nilai konstan tertentu. SD berubah apabila setiap unsur pada gugus datanya dikali/dibagi dengan nilai konstan tertentu. Bila dikalikan dengan nilai konstan, standar deviasi yang dihasilkan akan setara dengan hasilkali dari nilai standar deviasi aktual dengan konstan. Rumus Simpangan Baku untuk Data Tunggaluntuk data sample menggunakan rumusuntuk data populasi menggunkan rumus
Contoh : Selama 10 kali ulangan semester ini sobat mendapat nilai 91, 79, 86, 80, 75, 100, 87, 93, 90,dan 88. Berapa simpangan baku dari nilai ulangan sobat? Jawab Soal di atas menanyakan simpangan baku dari data populasi jadi menggunakan rumus simpangan baku untuk populasi. Kita cari dulu rata-ratanya rata-rata = (91+79+86+80+75+100+87+93+90+88)/10 = 869/10 = 85,9 Kita masukkan ke rumus
Varians (variance) Varians adalah salah satu ukuran dispersi atau ukuran variasi. Varians dapat menggambarkan bagaimana berpencarnya suatu data kuantitatif. Varians diberi simbol σ2 (baca: sigma kuadrat) untuk populasi dan untuk s2 sampel. Selanjutnya kita akan menggunakan simbol s2 untuk varians karena umumnya kita hampir selalu berkutat dengan sampel dan jarang sekali berkecimpung dengan populasi. Rumus varian atau ragam data tunggal untuk populasi Rumus varian atau ragam data tunggal untuk sampel Rumus varian atau ragam data kelompok untuk populasi Rumus varian atau ragam data kelompok untuk sampel
Keterangan: σ2 = varians atau ragam untuk populasi S2 = varians atau ragam untuk sampel fi = Frekuensi xi = Titik tengah x¯ = Rata-rata (mean) sampel dan μ = rata-rata populasi n = Jumlah data
Koefisien variasi (Coefficient of variation) Koefisien variasi merupakan suatu ukuran variansi yang dapat digunakan untuk membandingkan suatu distribusi data yang mempunyai satuan yang berbeda. Kalau kita membandingkan berbagai variansi atau dua variabel yang mempunyai satuan yang berbeda maka tidak dapat dilakukan dengan menghitung ukuran penyebaran yang sifatnya absolut. Koefisien variasi adalah suatu perbandingan antara simpangan baku dengan nilai rata-rata dan dinyatakan dengan persentase. Besarnya koefisien variasi akan berpengaruh terhadap kualitas sebaran data. Jadi jika koefisien variasi semakin kecil maka datanya semakin homogen dan jika koefisien korelasi semakin besar maka datanya semakin heterogen
Rumus Simpangan Baku untuk Data Tunggaluntuk data sample menggunakan rumusuntuk data populasi menggunkan rumus
Contoh :
Selama 10 kali ulangan semester ini sobat mendapat nilai 91, 79, 86, 80, 75, 100, 87, 93, 90,dan 88. Berapa simpangan baku dari nilai ulangan sobat?
Jawab
Soal di atas menanyakan simpangan baku dari data populasi jadi menggunakan rumus simpangan baku untuk populasi.
Kita cari dulu rata-ratanya
rata-rata = (91+79+86+80+75+100+87+93+90+88)/10 = 869/10 = 85,9 Kita masukkan ke rumus
Varians (variance) Varians adalah salah satu ukuran dispersi atau ukuran variasi. Varians dapat menggambarkan bagaimana berpencarnya suatu data kuantitatif. Varians diberi simbol σ2 (baca: sigma kuadrat) untuk populasi dan untuk s2 sampel. Selanjutnya kita akan menggunakan simbol s2 untuk varians karena umumnya kita hampir selalu berkutat dengan sampel dan jarang sekali berkecimpung dengan populasi. Rumus varian atau ragam data tunggal untuk populasi Rumus varian atau ragam data tunggal untuk sampel Rumus varian atau ragam data kelompok untuk populasi Rumus varian atau ragam data kelompok untuk sampel
Keterangan:
σ2 = varians atau ragam untuk populasi
S2 = varians atau ragam untuk sampel
fi = Frekuensi
xi = Titik tengah
x¯ = Rata-rata (mean) sampel dan μ = rata-rata populasi
n = Jumlah data
Koefisien variasi (Coefficient of variation) Koefisien variasi merupakan suatu ukuran variansi yang dapat digunakan untuk membandingkan suatu distribusi data yang mempunyai satuan yang berbeda. Kalau kita membandingkan berbagai variansi atau dua variabel yang mempunyai satuan yang berbeda maka tidak dapat dilakukan dengan menghitung ukuran penyebaran yang sifatnya absolut. Koefisien variasi adalah suatu perbandingan antara simpangan baku dengan nilai rata-rata dan dinyatakan dengan persentase. Besarnya koefisien variasi akan berpengaruh terhadap kualitas sebaran data. Jadi jika koefisien variasi semakin kecil maka datanya semakin homogen dan jika koefisien korelasi semakin besar maka datanya semakin heterogen