Mamy do uzasadnienia równość:
Pamiętamy:
Uzasadnimy, że:
[tex]\boxed{(-4)^{7} +(-4)^{7} +(-4)^{7} +(-4)^{7} =-4^{8}}\\\\\\\\L=(-4)^{7} +(-4)^{7} +(-4)^{7} +(-4)^{7} =(-4)^{7} \cdot (1+1+1+1)=(-4)^{7} \cdot 4=-4^{7} \cdot 4^{1} =-4^{7+1} =-4^{8} \\\\P=-4^{8}\\\\L=P~~~~~~~~cbdu[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Mamy do uzasadnienia równość:
Pamiętamy:
Uzasadnimy, że:
[tex]\boxed{(-4)^{7} +(-4)^{7} +(-4)^{7} +(-4)^{7} =-4^{8}}\\\\\\\\L=(-4)^{7} +(-4)^{7} +(-4)^{7} +(-4)^{7} =(-4)^{7} \cdot (1+1+1+1)=(-4)^{7} \cdot 4=-4^{7} \cdot 4^{1} =-4^{7+1} =-4^{8} \\\\P=-4^{8}\\\\L=P~~~~~~~~cbdu[/tex]