Szczegółowe wyjaśnienie:
Korzystamy ze wzorów redukcyjnych:
[tex]sin150^{0} = sin(90^{0}+60^{0}) = sin60^{0} = \frac{1}{2}\\\\cos120^{0} = cos(90^{0}+30^{0}) = -sin30^{0} = -\frac{1}{2}\\\\oraz:\\\\cos90^{0} = 0\\\\sin90^{0} = 1[/tex]
[tex]L = -cos150^{0}\cdot cos90^{0}-sin150^{0}\cdot sin90^{0} =-cos150^{0}\cdot0-sin(90^{0}+60^{0})\cdot1=\\\\=0-(cos60^{0})\cdot1 = -cos60^{0} = \boxed{-\frac{1}{2}}[/tex]
[tex]P = cos120^{0} = cos(90^{0}+30^{0}) = -sin30^{0} = \boxed{-\frac{1}{2}}[/tex]
[tex]\boxed{L = P}[/tex]
[tex]c.n.d.[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Szczegółowe wyjaśnienie:
Korzystamy ze wzorów redukcyjnych:
[tex]sin150^{0} = sin(90^{0}+60^{0}) = sin60^{0} = \frac{1}{2}\\\\cos120^{0} = cos(90^{0}+30^{0}) = -sin30^{0} = -\frac{1}{2}\\\\oraz:\\\\cos90^{0} = 0\\\\sin90^{0} = 1[/tex]
[tex]L = -cos150^{0}\cdot cos90^{0}-sin150^{0}\cdot sin90^{0} =-cos150^{0}\cdot0-sin(90^{0}+60^{0})\cdot1=\\\\=0-(cos60^{0})\cdot1 = -cos60^{0} = \boxed{-\frac{1}{2}}[/tex]
[tex]P = cos120^{0} = cos(90^{0}+30^{0}) = -sin30^{0} = \boxed{-\frac{1}{2}}[/tex]
[tex]\boxed{L = P}[/tex]
[tex]c.n.d.[/tex]