Odpowiedź:
[tex] {x}^{2} = {72}^{2} + {72}^{2} - 2 \times 72 \times 72 \times \cos(150) \\ {x}^{2} = 2 \times {72}^{2} + 2 \times {72}^{2} \times \cos(30) \\ {x}^{2} = (1 + \cos(30)) (2 \times {72}^{2} ) \\ {x}^{2} = (1 + \frac{ \sqrt{3} }{2} )(10368) \\ {x}^{2} = \frac{2 + \sqrt{3} }{2 } \times 10368 \\ {x}^{2} = (2 + \sqrt{3)} \times 5184 \\ {x}^{2} = 19346.951 \\ x = 139.093[/tex]
[tex] {x}^{2} = {(1.5)}^{2} + {(1.3)}^{2} - 2 \times 1.5 \times 1.3 \times \cos(25) \\ {x}^{2} = 2.25 + 1.69 - 3.9 \times 0.9063 \\ {x}^{2} = 3.94 - 3.53457 \\ {x}^{2} = 0.40543 \\ x = 0.637[/tex]
Szczegółowe wyjaśnienie:
Mam nadzieję, że pomogłem.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex] {x}^{2} = {72}^{2} + {72}^{2} - 2 \times 72 \times 72 \times \cos(150) \\ {x}^{2} = 2 \times {72}^{2} + 2 \times {72}^{2} \times \cos(30) \\ {x}^{2} = (1 + \cos(30)) (2 \times {72}^{2} ) \\ {x}^{2} = (1 + \frac{ \sqrt{3} }{2} )(10368) \\ {x}^{2} = \frac{2 + \sqrt{3} }{2 } \times 10368 \\ {x}^{2} = (2 + \sqrt{3)} \times 5184 \\ {x}^{2} = 19346.951 \\ x = 139.093[/tex]
[tex] {x}^{2} = {(1.5)}^{2} + {(1.3)}^{2} - 2 \times 1.5 \times 1.3 \times \cos(25) \\ {x}^{2} = 2.25 + 1.69 - 3.9 \times 0.9063 \\ {x}^{2} = 3.94 - 3.53457 \\ {x}^{2} = 0.40543 \\ x = 0.637[/tex]
Szczegółowe wyjaśnienie:
Mam nadzieję, że pomogłem.