Respuesta:
[tex](1 - a^2)^3=\\\\1^3 - 3(1)^2(a^2) + 3(1)(a^2)^2 - (a^2)^3\\\\1 - 3(1)(a^2) + 3(1)(a^4) - a^6\\\\1 - 3a^2 + 3a^4 - a^6[/tex]
[tex](a^2 - 2b)^3 =\\\\(a^2)^3 - 3(a^2)^2(2b) + 3(a^2)(2b)^2 - (2b)^3\\\\a^6 - 3(a^4)(2b) + 3(a^2)(4b^2) - 8b^3\\\\a^6 - 6a^4b + 12a^2b^2 - 8b^3[/tex]
[tex](1 - 2n)^3 =\\\\1^3 - 3(1)^2(2n) + 3(1)(2n)^2 - (2n)^3\\\\1 - 3(1)(2n) + 3(1)(4n^2) - 8n^3\\\\1 - 6n + 12n^2 - 8n^3[/tex]
[tex](1 - 3y)^3\\\\1^3 - 3(1)^2(3y) + 3(1)(3y)^2 - (3y)^3\\\\1 - 3(1)(3y) + 3(1)(9y^2) - 27y^3\\\\1 - 9y + 27y^2 - 27y^3[/tex]
[tex](n - 4)^3=\\ \\n^3 - 3(n)^2(4) + 3(n)(4)^2 - 4^3\\\\n^3 - 3(n^2)(4) + 3(n)(16) - 64\\\\n^3 - 12n^2 + 48n - 64[/tex]
Explicación paso a paso:
123456789
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
[tex](1 - a^2)^3=\\\\1^3 - 3(1)^2(a^2) + 3(1)(a^2)^2 - (a^2)^3\\\\1 - 3(1)(a^2) + 3(1)(a^4) - a^6\\\\1 - 3a^2 + 3a^4 - a^6[/tex]
[tex](a^2 - 2b)^3 =\\\\(a^2)^3 - 3(a^2)^2(2b) + 3(a^2)(2b)^2 - (2b)^3\\\\a^6 - 3(a^4)(2b) + 3(a^2)(4b^2) - 8b^3\\\\a^6 - 6a^4b + 12a^2b^2 - 8b^3[/tex]
[tex](1 - 2n)^3 =\\\\1^3 - 3(1)^2(2n) + 3(1)(2n)^2 - (2n)^3\\\\1 - 3(1)(2n) + 3(1)(4n^2) - 8n^3\\\\1 - 6n + 12n^2 - 8n^3[/tex]
[tex](1 - 3y)^3\\\\1^3 - 3(1)^2(3y) + 3(1)(3y)^2 - (3y)^3\\\\1 - 3(1)(3y) + 3(1)(9y^2) - 27y^3\\\\1 - 9y + 27y^2 - 27y^3[/tex]
[tex](n - 4)^3=\\ \\n^3 - 3(n)^2(4) + 3(n)(4)^2 - 4^3\\\\n^3 - 3(n^2)(4) + 3(n)(16) - 64\\\\n^3 - 12n^2 + 48n - 64[/tex]
Explicación paso a paso:
Respuesta:
Explicación paso a paso:
123456789