Explicación paso a paso:
Sumar 16 a ambos lados:
[tex]4 {x}^{2} - 16 + 16 = 0 + 16[/tex]
Simplificar:
[tex]4 {x}^{2} = 16[/tex]
Dividir ambos lados entre 4:
[tex] \frac{4 {x}^{2} }{4} = \frac{16}{4} [/tex]
[tex] {x}^{2} = 4[/tex]
Para [tex] {x}^{2} = f(a)[/tex]las soluciones son [tex]x = \sqrt{f(a)} , - \sqrt{f(a)} [/tex]
[tex]x = \sqrt{4} ,x = - \sqrt{4} [/tex]
Calcular las raíces cuadradas:
[tex] \sqrt{4} = 2 \\ - \sqrt{4} = - 2[/tex]
Respuesta:
[tex]x = 2,x = - 2[/tex]
[tex]\huge\orange{\boxed {¿Me }} \huge\blue{\boxed {das }} \huge\red{\boxed {coronita?}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Explicación paso a paso:
Sumar 16 a ambos lados:
[tex]4 {x}^{2} - 16 + 16 = 0 + 16[/tex]
Simplificar:
[tex]4 {x}^{2} = 16[/tex]
Dividir ambos lados entre 4:
[tex] \frac{4 {x}^{2} }{4} = \frac{16}{4} [/tex]
Simplificar:
[tex] {x}^{2} = 4[/tex]
Para [tex] {x}^{2} = f(a)[/tex]las soluciones son [tex]x = \sqrt{f(a)} , - \sqrt{f(a)} [/tex]
[tex]x = \sqrt{4} ,x = - \sqrt{4} [/tex]
Calcular las raíces cuadradas:
[tex] \sqrt{4} = 2 \\ - \sqrt{4} = - 2[/tex]
Respuesta:
[tex]x = 2,x = - 2[/tex]
[tex]\huge\orange{\boxed {¿Me }} \huge\blue{\boxed {das }} \huge\red{\boxed {coronita?}}[/tex]