" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ...
Di sini, a = 1 dan f(x) = 3x^2 + 4x - 2.
Pertama-tama, kita perlu mencari turunan f(x) hingga orde ketiga:
f(x) = 3x^2 + 4x - 2
f'(x) = 6x + 4
f''(x) = 6
f'''(x) = 0
Kemudian, kita dapat mengevaluasi rumus deret Taylor:
f(1 + h) = f(1) + f'(1)h + f''(1)h^2/2! + f'''(1)h^3/3! + ...
= (3(1+h)^2 + 4(1+h) - 2) + (6(1+h) + 4)h + 6h^2/2!
= 3h^2 + 10h + 5
Jadi, deret Taylor untuk f(x) = 3x^2 + 4x - 2 di sekitar x = 1 adalah:
f(x) = 3 + 10(x-1) + 3(x-1)^2