Respuesta:
Suma de ángulos interiores
55° + α + β = 180°
α = 125° - β
Teorema de los senos
25m/sen(α) = 5m/sen(β) = X/sen(55°)
Identidad sen(a-b)
sen(α) = sen(125° - β)
sen(α) = sen(125°)•cos(β) - cos(125°)•sen(β)
Resolución (ángulo β)
25m/sen(α) = 5m/sen(β)
sen(α)/sen(β) = 5
[sen(125°)•cos(β) - cos(125°)•sen(β)]/sen(β) = 5
sen(125°)/tan(β) - cos(125°) = 5
tan(β) = sen(125°)/[5 + cos(125°)]
β ≈ 10° 29' 4"
Resolución lado faltante
5m/sen(β) = X/sen(55°)
X = 5m•sen(55°)/sen(β)
X = 5m•sen(55°)/sen(10° 29' 4")
X ≈ 22,508m
Perimetro:
P = 25m + 5m + X
P ≈ 25m + 5m + 22,508m
P ≈ 52,508m
Explicación paso a paso:
chinito es 88 el perimetro de la valla
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Respuesta:
Suma de ángulos interiores
55° + α + β = 180°
α = 125° - β
Teorema de los senos
25m/sen(α) = 5m/sen(β) = X/sen(55°)
Identidad sen(a-b)
sen(α) = sen(125° - β)
sen(α) = sen(125°)•cos(β) - cos(125°)•sen(β)
Resolución (ángulo β)
25m/sen(α) = 5m/sen(β)
sen(α)/sen(β) = 5
[sen(125°)•cos(β) - cos(125°)•sen(β)]/sen(β) = 5
sen(125°)/tan(β) - cos(125°) = 5
tan(β) = sen(125°)/[5 + cos(125°)]
β ≈ 10° 29' 4"
Resolución lado faltante
5m/sen(β) = X/sen(55°)
X = 5m•sen(55°)/sen(β)
X = 5m•sen(55°)/sen(10° 29' 4")
X ≈ 22,508m
Perimetro:
P = 25m + 5m + X
P ≈ 25m + 5m + 22,508m
P ≈ 52,508m
Explicación paso a paso:
Respuesta:
chinito es 88 el perimetro de la valla
Explicación paso a paso: