[tex]\large\boxed{ \bold{F_{g} = 2.72244897\ . \ 10^{-6} \ N }}[/tex]
Datos:
[tex]\bold{m_{1} = 900 \ kg}[/tex]
[tex]\bold{m_{2} = 800 \ kg}[/tex]
[tex]\bold{d= 4.2 \ m}[/tex]
[tex]\large\boxed{ \bold{ F= G\ \frac{m_{1} \ . \ m_{2} }{ d^{2} } } }[/tex]
Donde
[tex]\bold{ m_{1},\ \ m_{2}} \ \ \ \ \large\textsf{Masa de los cuerpos }[/tex]
[tex]\bold{ d} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \large\textsf{Distancia }[/tex]
[tex]\bold{ F_{g} } \ \ \ \ \ \ \ \ \ \ \ \ \large\textsf{Fuerza gravitacional atracci\'on masas }[/tex]
[tex]\bold{ G} \ \ \ \ \ \ \ \ \ \ \ \ \ \large\textsf{Constante de gravitaci\'on universal }[/tex]
[tex]\large\boxed {\bold {G = 6.67 \ . \ 10^{-11} \ \frac{N \ m ^{2} }{kg^{2} } }}[/tex]
[tex]\large\textsf{Reemplazamos los valores }[/tex]
[tex]\boxed{ \bold{ F_{g}= \left[6.67 \ . \ 10^{-11} \ \frac{N \ m ^{2} }{kg^{2} }\right ] \frac{(900 \ kg) \ . \ (800 \ kg) }{(4.2 \ m)^{2} } }}[/tex]
[tex]\boxed{ \bold{F_{g}= \left[6.67 \ . \ 10^{-11} \ \frac{N \not m ^{2} }{\not kg^{2} }\right ] \frac{ 720000 \not kg^{2} }{17.64 \not m^{2} } }}[/tex]
[tex]\boxed{ \bold{ F_{g}=[6.67 \ . \ 10^{-11} ] \ . \ \frac{720000}{17.64} \ N }}[/tex]
[tex]\textsf{Agrupamos t\'erminos y exponentes }[/tex]
[tex]\boxed{ \bold{ F_{g}=6.67 \ . \ \frac{ 720000}{17.64} \ . \ \ 10^{-11} \ N }}[/tex]
[tex]\boxed{ \bold{ F_{g}=\frac{ 4802400}{17.64} \ . \ \ 10^{-11} \ N }}[/tex]
[tex]\boxed{ \bold{ F_{g}= 272244.89795 \ . \ 10^{-11} \ N }}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
La fuerza de atracción gravitacional entre las dos masas es:
[tex]\large\boxed{ \bold{F_{g} = 2.72244897\ . \ 10^{-6} \ N }}[/tex]
Solución
Datos:
[tex]\bold{m_{1} = 900 \ kg}[/tex]
[tex]\bold{m_{2} = 800 \ kg}[/tex]
[tex]\bold{d= 4.2 \ m}[/tex]
Hallamos la atracción gravitacional
Empleamos la fórmula
[tex]\large\boxed{ \bold{ F= G\ \frac{m_{1} \ . \ m_{2} }{ d^{2} } } }[/tex]
Donde
[tex]\bold{ m_{1},\ \ m_{2}} \ \ \ \ \large\textsf{Masa de los cuerpos }[/tex]
[tex]\bold{ d} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \large\textsf{Distancia }[/tex]
[tex]\bold{ F_{g} } \ \ \ \ \ \ \ \ \ \ \ \ \large\textsf{Fuerza gravitacional atracci\'on masas }[/tex]
[tex]\bold{ G} \ \ \ \ \ \ \ \ \ \ \ \ \ \large\textsf{Constante de gravitaci\'on universal }[/tex]
Donde
[tex]\large\boxed {\bold {G = 6.67 \ . \ 10^{-11} \ \frac{N \ m ^{2} }{kg^{2} } }}[/tex]
[tex]\large\textsf{Reemplazamos los valores }[/tex]
[tex]\boxed{ \bold{ F_{g}= \left[6.67 \ . \ 10^{-11} \ \frac{N \ m ^{2} }{kg^{2} }\right ] \frac{(900 \ kg) \ . \ (800 \ kg) }{(4.2 \ m)^{2} } }}[/tex]
[tex]\boxed{ \bold{F_{g}= \left[6.67 \ . \ 10^{-11} \ \frac{N \not m ^{2} }{\not kg^{2} }\right ] \frac{ 720000 \not kg^{2} }{17.64 \not m^{2} } }}[/tex]
[tex]\boxed{ \bold{ F_{g}=[6.67 \ . \ 10^{-11} ] \ . \ \frac{720000}{17.64} \ N }}[/tex]
[tex]\textsf{Agrupamos t\'erminos y exponentes }[/tex]
[tex]\boxed{ \bold{ F_{g}=6.67 \ . \ \frac{ 720000}{17.64} \ . \ \ 10^{-11} \ N }}[/tex]
[tex]\boxed{ \bold{ F_{g}=\frac{ 4802400}{17.64} \ . \ \ 10^{-11} \ N }}[/tex]
[tex]\boxed{ \bold{ F_{g}= 272244.89795 \ . \ 10^{-11} \ N }}[/tex]
[tex]\large\boxed{ \bold{F_{g} = 2.72244897\ . \ 10^{-6} \ N }}[/tex]
Qué sería la fuerza de atracción gravitacional entre las dos masas