Una fabrica produce chompas y camisas . cada lote de chompas requiere de dos días de hilado y cuatro días de acabado . cada lote de camisas necesita un día en hilado y un día en acabado .el departamento de hilado esta disponible por 20 días al mes , mientras que el de acabado por 24 días al mes . se desea maximizar la utilidad de la fabrica , sabiendo que por cada lote de chompas se obtiene $800 de utilidad y por cada lote de camisas $300 de utilidad.Defina el variable y plantee el problema de programación lineal. Dibuje la región factible y determine sus vértices Determine las cantidades optimas de chompas y camisas a producir.
eegm0723
Variables: X= chompas Y= camisas Maximizar= 800x+300y Restricciones 2*x+y≤20 4*x+y≤24 Resolviendo en el software qm tenemos que Se deben producir 2 lotes de chompas y 16 de camisas para que de una utilida máxima de 6400.00 dólares.
Maximizar= 800x+300y Restricciones
2*x+y≤20 4*x+y≤24
Resolviendo en el software qm tenemos que
Se deben producir 2 lotes de chompas y 16 de camisas para que de una utilida máxima de 6400.00 dólares.