Respuesta:
[tex]X(t) = \int v(t)dt \\ X(t) = \int(t^3 + 2t^2+1)dt \\ X(t) = \frac{1}{4} {t}^{4} + \frac{2}{3}t^3+t + c [/tex]
[tex]para \: t = 2 \: \: \: X(t) = 3 \\ \frac{1}{4} {2}^{4} + \frac{2}{3}2^3+2+ c = 3 \\ c = -\frac{25}{3}[/tex]
Luego, la posición para cualquier tiempo es:
[tex] X(t) = \frac{1}{4} {t}^{4} + \frac{1}{3}t^3+t -\frac{25}{3} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
[tex]X(t) = \int v(t)dt \\ X(t) = \int(t^3 + 2t^2+1)dt \\ X(t) = \frac{1}{4} {t}^{4} + \frac{2}{3}t^3+t + c [/tex]
[tex]para \: t = 2 \: \: \: X(t) = 3 \\ \frac{1}{4} {2}^{4} + \frac{2}{3}2^3+2+ c = 3 \\ c = -\frac{25}{3}[/tex]
Luego, la posición para cualquier tiempo es:
[tex] X(t) = \frac{1}{4} {t}^{4} + \frac{1}{3}t^3+t -\frac{25}{3} [/tex]