" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Teza: (a+b)^2 >= ab
Dowód:
(a-b)^2>= 0
a^2 -2ab + b^2 >= 0
a^2 + 2ab + b^2 - 4ab >= 0
(a+b)^2 - 4ab >= 0
(a+b)^2 >= 4ab, więc tym bardziej:
(a+b)^2 >= ab, c.n.d.