Odpowiedź:
[tex]\huge\boxed {~~\dfrac{1}{\sqrt{50} -\sqrt{8} } =\dfrac{\sqrt{2} }{6} ~~}[/tex]
Szczegółowe wyjaśnienie:
Korzystamy ze wzor skróconego mnożenia:
oraz
Obliczamy :
I. metoda
[tex]\dfrac{1}{\sqrt{50} -\sqrt{8} } \cdot \dfrac{\sqrt{50} +\sqrt{8} }{\sqrt{50} +\sqrt{8} } =\dfrac{\sqrt{25\cdot 2} +\sqrt{4\cdot 2} }{(\sqrt{50})^{2} -(\sqrt{8} )^{2}} =\dfrac{5\sqrt{2} +2\sqrt{2} }{50-8} =\dfrac{7\!\!\!\!\diagup^1\sqrt{2} }{42\!\!\!\!\!\diagup_6} =\dfrac{\sqrt{2} }{6}[/tex]
II. metoda
[tex]\sqrt{50} =\sqrt{25\cdot 2} =\sqrt{5^{2}\cdot 2} =5\sqrt{2} \\\\\sqrt{8} =\sqrt{4\cdot 2} =\sqrt{2^{2}\cdot 2} =2\sqrt{2} \\\\\dfrac{1}{\sqrt{50} -\sqrt{8} } =\dfrac{1}{5\sqrt{2} -2\sqrt{2} } =\dfrac{1}{3\sqrt{2} } \cdot \dfrac{\sqrt{2} }{\sqrt{2} } =\dfrac{\sqrt{2} }{6}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]\huge\boxed {~~\dfrac{1}{\sqrt{50} -\sqrt{8} } =\dfrac{\sqrt{2} }{6} ~~}[/tex]
Szczegółowe wyjaśnienie:
Korzystamy ze wzor skróconego mnożenia:
oraz
Obliczamy :
I. metoda
[tex]\dfrac{1}{\sqrt{50} -\sqrt{8} } \cdot \dfrac{\sqrt{50} +\sqrt{8} }{\sqrt{50} +\sqrt{8} } =\dfrac{\sqrt{25\cdot 2} +\sqrt{4\cdot 2} }{(\sqrt{50})^{2} -(\sqrt{8} )^{2}} =\dfrac{5\sqrt{2} +2\sqrt{2} }{50-8} =\dfrac{7\!\!\!\!\diagup^1\sqrt{2} }{42\!\!\!\!\!\diagup_6} =\dfrac{\sqrt{2} }{6}[/tex]
II. metoda
[tex]\sqrt{50} =\sqrt{25\cdot 2} =\sqrt{5^{2}\cdot 2} =5\sqrt{2} \\\\\sqrt{8} =\sqrt{4\cdot 2} =\sqrt{2^{2}\cdot 2} =2\sqrt{2} \\\\\dfrac{1}{\sqrt{50} -\sqrt{8} } =\dfrac{1}{5\sqrt{2} -2\sqrt{2} } =\dfrac{1}{3\sqrt{2} } \cdot \dfrac{\sqrt{2} }{\sqrt{2} } =\dfrac{\sqrt{2} }{6}[/tex]