Odpowiedź:
b ) I AB I = √2 I AC I = [tex]\sqrt{37}[/tex] β = 135°
a = I BC I = ?
więc
( [tex]\sqrt{37} )^2= ( \sqrt{2} )^2 + a^2 - 2*\sqrt{2} *a* cos 135^o[/tex]
37 = 2 + a² - 2 √2 a*cos ( 90° + 45° )
37 = 2 + a² - 2√2*a *( - sin 45° )
37 =2 + a² + 2√2 a* 0,5√2
37 = 2 + a² + 2 a
a² + 2 a - 35 = 0
Δ = 2² - 4*1*(- 35) = 4 + 140 = 144 √Δ = 12
a = [tex]\frac{- 2 + 12}{2*1} = 5[/tex]
Odp. I BC I = 5
===============
c ) I AB I = 2 I AC I = [tex]\sqrt{7}[/tex] I BC I = 3
β = ?
Mamy
( √7 )² = 2² + 3² - 2*2*3*cos β
7 = 4 + 9 - 12*cos β
12 cos β = 6 / : 12
cos β = [tex]\frac{6}{12} = 0,5[/tex]
Odp. β = 60°
==================
wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
b ) I AB I = √2 I AC I = [tex]\sqrt{37}[/tex] β = 135°
a = I BC I = ?
więc
( [tex]\sqrt{37} )^2= ( \sqrt{2} )^2 + a^2 - 2*\sqrt{2} *a* cos 135^o[/tex]
37 = 2 + a² - 2 √2 a*cos ( 90° + 45° )
37 = 2 + a² - 2√2*a *( - sin 45° )
37 =2 + a² + 2√2 a* 0,5√2
37 = 2 + a² + 2 a
a² + 2 a - 35 = 0
Δ = 2² - 4*1*(- 35) = 4 + 140 = 144 √Δ = 12
a = [tex]\frac{- 2 + 12}{2*1} = 5[/tex]
Odp. I BC I = 5
===============
c ) I AB I = 2 I AC I = [tex]\sqrt{7}[/tex] I BC I = 3
β = ?
Mamy
( √7 )² = 2² + 3² - 2*2*3*cos β
7 = 4 + 9 - 12*cos β
12 cos β = 6 / : 12
cos β = [tex]\frac{6}{12} = 0,5[/tex]
Odp. β = 60°
==================
wyjaśnienie: