" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
u = cosx
u' = -sinx
v = cotx
v' = -csc²x
k'(x) = u'v + v'u
k'(x) = (-sinx)(cotx) + (-csc²x)(cosx)
k'(x) = (-sinx)(cosx/sinx) + (-csc²x)(cosx)
k'(x) = (-cosx) + (-1/sin²x)(cosx)
k'(x) = (-cosx) - cosx/sin²x
k'(x) = -cosx - cosx/sin²x
k'(x) = cosx + cosx/sin²x
k'(x) = cosx (1 + 1/sin²x)
k'(x) = cosx (1 + csc²x)