Penjelasan dengan langkah-langkah:
Turunan fungsi aljabar
[tex]h(x) = ax {}^{p} \to \: h'(x) = p \: . \: {ax}^{p - 1} \\ [/tex]
[tex]g(x) = (2 {x}^{2} - x) {}^{4} \\g'(x) = 4 \: . \: (2 {x}^{2} - x) {}^{4 - 1} \: . \: (4x - 1) \\ g'(x) = 4(4x - 1)(2 {x}^{2} - x) {}^{3} \\ g'(x) = (16x - 4)(2 {x}^{2} - x) {}^{3} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
Turunan fungsi aljabar
[tex]h(x) = ax {}^{p} \to \: h'(x) = p \: . \: {ax}^{p - 1} \\ [/tex]
[tex]g(x) = (2 {x}^{2} - x) {}^{4} \\g'(x) = 4 \: . \: (2 {x}^{2} - x) {}^{4 - 1} \: . \: (4x - 1) \\ g'(x) = 4(4x - 1)(2 {x}^{2} - x) {}^{3} \\ g'(x) = (16x - 4)(2 {x}^{2} - x) {}^{3} [/tex]