Barisan geometri
2, 8, 12, ...
a). Suku pertama = 2
[tex]rasio = \frac{u2}{u1} = \frac{8}{2} = 4 \\ \\ b). Rumus \: suku \: ke \: n \\ un = {a \times r}^{n - 1} \\ un = 2 \times {4}^{n - 1} \\ un = {2}^{1} \times ({ {2}^{2}) }^{n - 1} \\ un = {2}^{1} \times {2}^{2n - 2} \\ un = {2}^{2n - 2 + 1} \\ un = {2}^{2n - 1} \\ \\ c). \: Suku \: ke \: 5 \\ un = {2}^{2n - 1} \\ u5 = {2}^{2(5) - 1} \\ u5 = {2}^{10 - 1} \\ u5 = {2}^{9} \\ u5 = 512[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Barisan geometri
2, 8, 12, ...
a). Suku pertama = 2
[tex]rasio = \frac{u2}{u1} = \frac{8}{2} = 4 \\ \\ b). Rumus \: suku \: ke \: n \\ un = {a \times r}^{n - 1} \\ un = 2 \times {4}^{n - 1} \\ un = {2}^{1} \times ({ {2}^{2}) }^{n - 1} \\ un = {2}^{1} \times {2}^{2n - 2} \\ un = {2}^{2n - 2 + 1} \\ un = {2}^{2n - 1} \\ \\ c). \: Suku \: ke \: 5 \\ un = {2}^{2n - 1} \\ u5 = {2}^{2(5) - 1} \\ u5 = {2}^{10 - 1} \\ u5 = {2}^{9} \\ u5 = 512[/tex]