Jawaban:
Panjang AC = 18 cm
Penjelasan dengan langkah-langkah:
<BOC = 72°
<AOC = 180° - 72° = 108°
[tex]\begin{aligned}\rm\frac{panjang~BC}{panjang~AC}&=\rm \frac{ \frac{ \angle BOC}{ \cancel{{360}^{ \circ} }} \times \cancel{ \pi {r}^{2} } }{ \frac{\angle AOC}{ \cancel{{360}^{ \circ}} } \times \cancel{\pi {r}^{2} }} \\ \\ \rm \frac{12}{AC}&=\rm \frac{\angle BOC}{\angle AOC} \\ \\\rm \frac{12}{AC}&=\rm \frac{ {72}^{ \circ} }{ {108}^{ \circ} } \\ \\ \rm AC&=\rm \frac{108 \times 12}{72} \\ \\ \rm AC&=\rm \frac{1296}{72} \\ \\\rm AC&=\rm18 \: cm \end{aligned}[/tex]
[tex] \\ [/tex]
#LearnWithPanda
..
[tex]\begin{gathered}\boxed{ \begin{array}{lr} \boxed{\large{\sf{J= \theta × \pi × r × r}}} \\ \boxed{\large{\sf{B =\theta × \pi × d~~~~~}}}\\ \\\sf{Keterangan \ \: :}\\ \begin{aligned} \sf{ J} &= \sf{ Luas~Juring}\\ \sf{ B } &= \sf{Panjang~Busur} \\ \sf{\theta} &= \sf{Besar~Sudut~Pusat} \\ \sf{\pi} &= \sf{Konstanta~Lingkaran} \\\sf{ r } &= \sf{ Jari-Jari }\\ \sf{ d } & =\sf{ Diameter } \end{aligned} \end{array}} \begin{aligned}&~~\to \sf{r = 1/2d}\\ &~~\to \sf{\pi =\frac{22}{7} \: jika \: r ~atau~d = kelipatan \: 7} \\&~~\to \sf{\pi =3.14 \: jika \: r ~atau~d \ne kelipatan \: 7}\end{aligned}\end{gathered}[/tex]
[tex]\begin{aligned} Busur~AC &= \frac{\theta AOC}{\theta BOC} \times Busur~BC \\&= \frac{180^\circ - 72^\circ}{72^\circ} \times 12~cm \\&= \frac{108^\circ}{72^\circ} \times 12~cm \\&= 1.5 \times 12~cm \\&= \boxed{\bold{\underline{18~cm}}} \end{aligned}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 06 - 06 - 2023}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Jawaban:
Panjang AC = 18 cm
Penjelasan dengan langkah-langkah:
<BOC = 72°
<AOC = 180° - 72° = 108°
[tex]\begin{aligned}\rm\frac{panjang~BC}{panjang~AC}&=\rm \frac{ \frac{ \angle BOC}{ \cancel{{360}^{ \circ} }} \times \cancel{ \pi {r}^{2} } }{ \frac{\angle AOC}{ \cancel{{360}^{ \circ}} } \times \cancel{\pi {r}^{2} }} \\ \\ \rm \frac{12}{AC}&=\rm \frac{\angle BOC}{\angle AOC} \\ \\\rm \frac{12}{AC}&=\rm \frac{ {72}^{ \circ} }{ {108}^{ \circ} } \\ \\ \rm AC&=\rm \frac{108 \times 12}{72} \\ \\ \rm AC&=\rm \frac{1296}{72} \\ \\\rm AC&=\rm18 \: cm \end{aligned}[/tex]
[tex] \\ [/tex]
#LearnWithPanda
Lingkaran
[Sudut]
..
[tex]\begin{gathered}\boxed{ \begin{array}{lr} \boxed{\large{\sf{J= \theta × \pi × r × r}}} \\ \boxed{\large{\sf{B =\theta × \pi × d~~~~~}}}\\ \\\sf{Keterangan \ \: :}\\ \begin{aligned} \sf{ J} &= \sf{ Luas~Juring}\\ \sf{ B } &= \sf{Panjang~Busur} \\ \sf{\theta} &= \sf{Besar~Sudut~Pusat} \\ \sf{\pi} &= \sf{Konstanta~Lingkaran} \\\sf{ r } &= \sf{ Jari-Jari }\\ \sf{ d } & =\sf{ Diameter } \end{aligned} \end{array}} \begin{aligned}&~~\to \sf{r = 1/2d}\\ &~~\to \sf{\pi =\frac{22}{7} \: jika \: r ~atau~d = kelipatan \: 7} \\&~~\to \sf{\pi =3.14 \: jika \: r ~atau~d \ne kelipatan \: 7}\end{aligned}\end{gathered}[/tex]
Penyelesaian Soal
[tex]\begin{aligned} Busur~AC &= \frac{\theta AOC}{\theta BOC} \times Busur~BC \\&= \frac{180^\circ - 72^\circ}{72^\circ} \times 12~cm \\&= \frac{108^\circ}{72^\circ} \times 12~cm \\&= 1.5 \times 12~cm \\&= \boxed{\bold{\underline{18~cm}}} \end{aligned}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 06 - 06 - 2023}}[/tex]