Jawab:
lmit trigonometri
Penjelasan dengan langkah-langkah:
lim(x-> π/4) sin (π/4 - x ) tan (x + π/4)
.
misal
t = x - π/4
x = t + π/4
x = π/4 --> t = 0
lim(x-> π/4) sin (π/4 - x ) tan (x + π/4)=
= lim(t ->0) sin (π/4 - (t + π/4)) tan (t + π/4 + π/4)
= lim(t -> 0) sin (-t) tan (π/2 + t)
= lim(t -> 0) - sin t . - cot (t)
= lim(t -> 0) - sin t / - tan t
= t/t
= 1
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawab:
lmit trigonometri
Penjelasan dengan langkah-langkah:
lim(x-> π/4) sin (π/4 - x ) tan (x + π/4)
.
misal
t = x - π/4
x = t + π/4
x = π/4 --> t = 0
.
lim(x-> π/4) sin (π/4 - x ) tan (x + π/4)=
= lim(t ->0) sin (π/4 - (t + π/4)) tan (t + π/4 + π/4)
= lim(t -> 0) sin (-t) tan (π/2 + t)
= lim(t -> 0) - sin t . - cot (t)
= lim(t -> 0) - sin t / - tan t
= t/t
= 1