Penjelasan dengan langkah-langkah:
LIMIT TAK HINGGA
16.
Lim [√(16x²–20x–7) – √(9x²–7x + 20) ] = ∞
x→∞
karena koefisien 16x² > 9x²
17.
Lim [√(16x²+8x–5) – (4x – 8)]
= Lim [√(16x²+8x–5) – √(16x²–64x+64) ]
a = 16
b = 8
c = –64
Lim [√(16x²+8x–5) – √(16x²–64x+64) ]
= 8 – (– 64)
2√16
= 8 + 64
2 × 4
= 72
8
= 9
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
LIMIT TAK HINGGA
16.
Lim [√(16x²–20x–7) – √(9x²–7x + 20) ] = ∞
x→∞
karena koefisien 16x² > 9x²
17.
Lim [√(16x²+8x–5) – (4x – 8)]
x→∞
= Lim [√(16x²+8x–5) – √(16x²–64x+64) ]
x→∞
a = 16
b = 8
c = –64
Lim [√(16x²+8x–5) – √(16x²–64x+64) ]
x→∞
= 8 – (– 64)
2√16
= 8 + 64
2 × 4
= 72
8
= 9