[tex] \begin{align} (f\circ g)(x) &= 8x^2-11 \\ f(g(x)) &= 8x^2-11 \\ 2(g(x))^2-3 &= 8x^2-11 \\ 2(g(x))^2 &= 8x^2-8 \\ (g(x))^2 &= 4x^2-4 \\ g(x) &= \pm \sqrt{4x^2-4} \\g(x) &= \pm \sqrt{4(x^2-1)} \\ g(x) &= \pm2 \sqrt{x^2-1} \end{align} [/tex]
Jawab:g(x) = 6x² - 18
Penjelasan :Jika diketahui(f + g)(x) = 8x² - 11f(x) = 2x² - 3
Tentukan g(x)(f + g)(x) = f(x) + g(x)8x² - 11 = 2x² - 3 + g(x)g(x) = 8x² - 11 - 2x² + 3g(x) = 6x² - 18
(xcvi)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
[tex] \begin{align} (f\circ g)(x) &= 8x^2-11 \\ f(g(x)) &= 8x^2-11 \\ 2(g(x))^2-3 &= 8x^2-11 \\ 2(g(x))^2 &= 8x^2-8 \\ (g(x))^2 &= 4x^2-4 \\ g(x) &= \pm \sqrt{4x^2-4} \\g(x) &= \pm \sqrt{4(x^2-1)} \\ g(x) &= \pm2 \sqrt{x^2-1} \end{align} [/tex]
Verified answer
Jawab:
g(x) = 6x² - 18
Penjelasan :
Jika diketahui
(f + g)(x) = 8x² - 11
f(x) = 2x² - 3
Tentukan g(x)
(f + g)(x) = f(x) + g(x)
8x² - 11 = 2x² - 3 + g(x)
g(x) = 8x² - 11 - 2x² + 3
g(x) = 6x² - 18
(xcvi)