" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
No. 26(1/2) log(-2x + 6) > -1
(1/2) log(-2x + 6) > (1/2) log(1/2)⁻¹
-2x + 6 < (1/2)⁻¹ (tandanya berubah karena basisnya 0<a<1)
-2x + 6 < 2
-2x < -4
2x > 4
x > 2
syarat numerus
-2x + 6 > 0
-2x > -6
2x < 6
x < 3
HP = {x| 2 < x < 3}
No.27
log(x + 5) + log(x - 2) ≥ log(22 - x)
(x + 5)(x - 2) ≥ (22 - x)
x² + 3x - 10 ≥ 22 - x
x² + 4x - 32 ≥ 0
(x + 8)(x - 4) ≥ 0
x ≤ -8 atau x ≥ 4
syarat numerus
x + 5 > 0
x > -5
dan
x - 2 > 0
x > 2
dan
22 - x > 0
x < 22
syarat numerus = {2 < x < 22}
HP kesluruhan = {4 ≤ x < 22} (A)
No. 28
syarat numerus
x² - 2x - 3 > 0
(x + 1)(x - 3) > 0
x < -1 atau x > 3
syarat pertidaksamaan
x² - 2x - 3 < 21
x² - 2x - 24 < 0
(x + 4)(x - 6) < 0
-4 < x < 6
irisan kedua syarat
-4 < x < -1 atau 3 < x < 6
No. 29
³log²x - 2 ³logx - 3 ≤ 0
misalkan
y = ³logx , maka
y² - 2y - 3 ≤ 0
(y + 1)(y - 3) ≤ 0
-1 ≤ y ≤ 3
(i)
y ≥ -1
³logx ≥ -1
x ≥ 3⁻¹
x ≥ 1/3
(ii)
y ≤ 3
³logx ≤ 3
x ≤ 3³
x ≤ 27
HP = {x| 1/3 ≤ x ≤ 27}