Nomor 10
f(x) = x - 1
(gof) (x) = g(f(x))
x² - 3x + 3 = g(x - 1)
(x - 1)² - (x - 1) + 1 = g(x - 1)
x² - x + 1 = g(x)
jawaban C
Nomor 11
f(x) = √(x + 7)
y = √(x + 7)
y² = x + 7
x = y² - 7
f`¹(x) = x² - 7
Jawaban E
Nomor 12
f(x) = 7x + 14
y = 7x + 14
7x = y - 14
x = (y - 14) / 7
x = (1/7)y - 2
f`¹(x) = (1/7)x - 2
Mapel : Matematika
Bab : Fungsi Invers
Kode : 10.2.3
Jawab:
10.
(g o f)(x) = x² - 3x + 3
g(x - 1) = x² - 3x + 3
Misal f(x) = x - 1
f⁻¹(x) = x + 1
Misal x = x + 1
g((x + 1) - 1) = (x + 1)² - 3(x + 1) + 3
g(x) = x² + 2x + 1 - 3x - 3 + 3
g(x) = x² - x + 1
12.
13.
f⁻¹(x) = y
y =
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Nomor 10
f(x) = x - 1
(gof) (x) = g(f(x))
x² - 3x + 3 = g(x - 1)
(x - 1)² - (x - 1) + 1 = g(x - 1)
x² - x + 1 = g(x)
jawaban C
Nomor 11
f(x) = √(x + 7)
y = √(x + 7)
y² = x + 7
x = y² - 7
f`¹(x) = x² - 7
Jawaban E
Nomor 12
f(x) = 7x + 14
y = 7x + 14
7x = y - 14
x = (y - 14) / 7
x = (1/7)y - 2
f`¹(x) = (1/7)x - 2
Jawaban E
Mapel : Matematika
Bab : Fungsi Invers
Kode : 10.2.3
Jawab:
10.
f(x) = x - 1
(g o f)(x) = x² - 3x + 3
g(x - 1) = x² - 3x + 3
Misal f(x) = x - 1
f⁻¹(x) = x + 1
Misal x = x + 1
g((x + 1) - 1) = (x + 1)² - 3(x + 1) + 3
g(x) = x² + 2x + 1 - 3x - 3 + 3
g(x) = x² - x + 1
12.
13.
f(x) = 7x + 14
f⁻¹(x) = y
y =