11. (3x-2)²/(4x+3)² = (x(3 - 2/x))²/(x(4 + 3/x))²
= (x²(3 - 2/x)²)/(x²(4 + 3/x)²)
= (3 - 2/x)²/(4 + 3/x)² <= masukkan x = ∞
= (3-0)²/(4+0)²
= 3²/4²
12.f(x) = 3x⁴-4x²+x-6
f'(x) = 4.3x³-2.4x+1
f'(x) = 12x³-8x+1
13.f(x) = x²+8x-3
f'(x) = 2x+8
f'(3) = 2.3+8 = 14
14. y = (x²+1)(x³-1)
y = x⁵-x²+x³-1
y' = 5x⁴-2x+3x²
y' = 5x⁴+3x²-2x
15. Lakukan pembagian horner :
3 5
x = -4 -12
3 -7
hasil : y = 3 - 7/(x+4)
y' = 0 - (-7/(x+4)²)
y' = 7/(x+4)²
15. Naik :
y' > 0
3.4x²-2.6x > 0
12x²-12x > 0
12x(x-1) > 0
12x > 0 atau x > 1
x > 0 atau x > 1
x > 1
16. maksimum ketika y' = 0
y' = 0 = 12x²-36x+15
0 = 4x²-12x+5
0 = (2x-1)(2x-5)
2x = 1 atau 2x = 5
x = 1/2 atau x = 5/2
karena 5/2 > 1/2, maka nilai maksimum tercapai ketika x = 5/2
19. sama dengan nomor 14
20.y' = 2x-8 <= x = 2
y' = 2.2-8 = -4
persamaan garis singgung nya :
y+7 = -4(x-2)
y+7 = -4x+8
y+4x = 1
y+4x-1 = 0
4x+y-1 = 0
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
11. (3x-2)²/(4x+3)² = (x(3 - 2/x))²/(x(4 + 3/x))²
= (x²(3 - 2/x)²)/(x²(4 + 3/x)²)
= (3 - 2/x)²/(4 + 3/x)² <= masukkan x = ∞
= (3-0)²/(4+0)²
= 3²/4²
12.f(x) = 3x⁴-4x²+x-6
f'(x) = 4.3x³-2.4x+1
f'(x) = 12x³-8x+1
13.f(x) = x²+8x-3
f'(x) = 2x+8
f'(3) = 2.3+8 = 14
14. y = (x²+1)(x³-1)
y = x⁵-x²+x³-1
y' = 5x⁴-2x+3x²
y' = 5x⁴+3x²-2x
15. Lakukan pembagian horner :
3 5
x = -4 -12
3 -7
hasil : y = 3 - 7/(x+4)
y' = 0 - (-7/(x+4)²)
y' = 7/(x+4)²
15. Naik :
y' > 0
3.4x²-2.6x > 0
12x²-12x > 0
12x(x-1) > 0
12x > 0 atau x > 1
x > 0 atau x > 1
x > 1
16. maksimum ketika y' = 0
y' = 0 = 12x²-36x+15
0 = 4x²-12x+5
0 = (2x-1)(2x-5)
2x = 1 atau 2x = 5
x = 1/2 atau x = 5/2
karena 5/2 > 1/2, maka nilai maksimum tercapai ketika x = 5/2
19. sama dengan nomor 14
20.y' = 2x-8 <= x = 2
y' = 2.2-8 = -4
persamaan garis singgung nya :
y+7 = -4(x-2)
y+7 = -4x+8
y+4x = 1
y+4x-1 = 0
4x+y-1 = 0