..
[tex]\begin{aligned} \frac{sin(150^{\circ}) - cos(120^{\circ})}{sin(120^{\circ}) - cos(150^{\circ})} &= \frac{\frac{1}{2} - \left( - \frac{1}{2} \right)}{\frac{\sqrt{3}}{2} - \left(- \frac{\sqrt{3}}{2} \right)} \\&= \frac{\frac{1}{2} + \frac{1}{2}}{\frac{\sqrt{3}}{2} +\frac{\sqrt{3}}{2} } \\&= \frac{1}{\sqrt{3}} \\&= \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\&= \boxed{\bold{\frac{1}{3}\sqrt{3}}} \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 09 - 05 - 2023}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Trigonometri
..
[tex]\begin{aligned} \frac{sin(150^{\circ}) - cos(120^{\circ})}{sin(120^{\circ}) - cos(150^{\circ})} &= \frac{\frac{1}{2} - \left( - \frac{1}{2} \right)}{\frac{\sqrt{3}}{2} - \left(- \frac{\sqrt{3}}{2} \right)} \\&= \frac{\frac{1}{2} + \frac{1}{2}}{\frac{\sqrt{3}}{2} +\frac{\sqrt{3}}{2} } \\&= \frac{1}{\sqrt{3}} \\&= \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\&= \boxed{\bold{\frac{1}{3}\sqrt{3}}} \end{aligned}[/tex]
[tex]\begin{array}{lr}\texttt{}\end{array}[/tex]
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 09 - 05 - 2023}}[/tex]