Tolong Jelaskan caranya nomer 3.A dan B dengan lengkap.
Arjun 1 D3-MMB A
Terimakasih Banyak
bendjol
1a. g(x) = √(x² - 2x + 5) x² - 2x + 5 ← definit positif maka Dg = {x| x ; x = Riil}
1b. f(x) = √((x²-4)/(x-4)) agar f(x) terdefinisi, maka (x²-4)/(x-4) ≥ 0 (x²-4)/(x-4) ≥ 0 saat x-4 > 0 ; maka x²-4 ≥ 0 x > 4 ; x² ≥ 4 → x ≥ 2 atau x ≤ -2
saat x-4 < 0 ; maka x²-4 ≤ 0 x < 4 ; x² ≤ 4 → -2 ≤ x ≤ 2
maka Df = {x| -2 ≤ x ≤ 2 atau x > 4 ; x = Riil}
3. f(g(h(x))) = sin (√(x²+3x+7)) → f(x) = sin x g(h(x)) = √(x²+3x+7) → g(x) = √x h(x) = x²+3x+7 → h(x) = x²+3x+7
f(g(h(x))) = √(3 - sin² x) → f(x) = √x g(h(x)) = 3 - sin² x → g(x) = 3-x² h(x) = sin x → h(x) = sin x
x² - 2x + 5 ← definit positif
maka Dg = {x| x ; x = Riil}
1b. f(x) = √((x²-4)/(x-4))
agar f(x) terdefinisi, maka (x²-4)/(x-4) ≥ 0
(x²-4)/(x-4) ≥ 0
saat x-4 > 0 ; maka x²-4 ≥ 0
x > 4 ; x² ≥ 4 → x ≥ 2 atau x ≤ -2
saat x-4 < 0 ; maka x²-4 ≤ 0
x < 4 ; x² ≤ 4 → -2 ≤ x ≤ 2
maka Df = {x| -2 ≤ x ≤ 2 atau x > 4 ; x = Riil}
3. f(g(h(x))) = sin (√(x²+3x+7)) → f(x) = sin x
g(h(x)) = √(x²+3x+7) → g(x) = √x
h(x) = x²+3x+7 → h(x) = x²+3x+7
f(g(h(x))) = √(3 - sin² x) → f(x) = √x
g(h(x)) = 3 - sin² x → g(x) = 3-x²
h(x) = sin x → h(x) = sin x
4. lim(x→∞) (-3) = -3
lim(x→-2) 12x = 12(-2)
= -24
lim(x→4) (x²-16)/(x-4) = lim(x→4) (x+4)(x-4)/(x-4)
= lim(x→4) (x+4)
= (4) + 4
= 8