Jawaban:
C.
Penjelasan:
Matriks Singular adalah matriks yang nilai determinannya = 0.
Rumus determinan Matriks adalah:
[tex]det \begin{bmatrix} a & b\\ c & d \end{bmatrix} = (a.d) - (b.c)[/tex]
Jadi, nilai k:
[tex]det \begin{bmatrix} {k}^{2} - 1 & 3\\ k & 2 \end{bmatrix} = 0[/tex]
[tex](( {k}^{2} - 1) \times (2)) - (3 \times k) = 0[/tex]
[tex]2 {k}^{2} - 2 - 3k = 0[/tex]
[tex]2 {k}^{2} - 3k - 2 = 0[/tex]
2k² - 4k + k + (1.-2) = 0
(2k + 1)(k - 2) = 0
Nilai k pertama:
2k + 1 = 0
2k = -1
k = -½
Nilai k kedua:
k - 2 = 0
k = 2
Hasil perkalian k:
= k pertama × k kedua
= [tex] - \frac{1}{2} \times 2[/tex]
= 1
Jawabannya C.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
C.
Penjelasan:
Matriks Singular adalah matriks yang nilai determinannya = 0.
Rumus determinan Matriks adalah:
[tex]det \begin{bmatrix} a & b\\ c & d \end{bmatrix} = (a.d) - (b.c)[/tex]
Jadi, nilai k:
[tex]det \begin{bmatrix} {k}^{2} - 1 & 3\\ k & 2 \end{bmatrix} = 0[/tex]
[tex](( {k}^{2} - 1) \times (2)) - (3 \times k) = 0[/tex]
[tex]2 {k}^{2} - 2 - 3k = 0[/tex]
[tex]2 {k}^{2} - 3k - 2 = 0[/tex]
2k² - 4k + k + (1.-2) = 0
(2k + 1)(k - 2) = 0
Nilai k pertama:
2k + 1 = 0
2k = -1
k = -½
Nilai k kedua:
k - 2 = 0
k = 2
Hasil perkalian k:
= k pertama × k kedua
= [tex] - \frac{1}{2} \times 2[/tex]
= 1
Jawabannya C.