[tex]\displaystyle\lim_{x \to 4} \: \frac{12 + x - x {}^{2} }{ \sqrt{x} - 2 }[/tex]
[tex]\displaystyle\lim_{x \to 4} \: \frac{ - {x}^{2} + 4x - 3x + 12 }{ \sqrt{x} - 2 }[/tex]
[tex]\displaystyle\lim_{x \to 4} \: \frac{ - {x}(x - 4) - 3(x - 4) }{ \sqrt{x} - 2 }[/tex]
[tex]\displaystyle\lim_{x \to 4} \: \frac{ - (x - 4) \times (x + 3) }{ \sqrt{x} - 2 }[/tex]
[tex]\displaystyle\lim_{x \to 4} \: \frac{ - ( \sqrt{x} - 2)( \sqrt{x} + 2) \times (x - 3) }{ \sqrt{x} - 2 }[/tex]
[tex]\displaystyle\lim_{x \to 4} \: - \sqrt{x} x - 3 \sqrt{x} - 2x + 6[/tex]
[tex] = - \sqrt{4} \times 4 - 3 \sqrt{4} - 2 \times 4 - 6[/tex]
[tex] = - 28[/tex]
..
lim x → 5
(d/dx(2x - 10))/(d/dx(√[x+4] - 3)
(2 - 0)/(d/dx(√[x+4]) - d/dx(3))
(2)/(1/(2√[x+4] - 0)
(2)/(1/2√[x+4]
(2 × 2√[x+4]/1)
(4√[x+4])
= 4√(5 + 4)
= 4√9
= 4.3
= 12
[tex]\begin{array}{lr}\texttt{Rate 1.0 Jika Kalian Iri dengan}\\\\ \texttt{Yang Mulia Maharaja Danial Alf'at}\end{array}[/tex] ☝️
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 20 - 03 - 2023}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Limit
Nomor 4
[tex]\displaystyle\lim_{x \to 4} \: \frac{12 + x - x {}^{2} }{ \sqrt{x} - 2 }[/tex]
[tex]\displaystyle\lim_{x \to 4} \: \frac{ - {x}^{2} + 4x - 3x + 12 }{ \sqrt{x} - 2 }[/tex]
[tex]\displaystyle\lim_{x \to 4} \: \frac{ - {x}(x - 4) - 3(x - 4) }{ \sqrt{x} - 2 }[/tex]
[tex]\displaystyle\lim_{x \to 4} \: \frac{ - (x - 4) \times (x + 3) }{ \sqrt{x} - 2 }[/tex]
[tex]\displaystyle\lim_{x \to 4} \: \frac{ - ( \sqrt{x} - 2)( \sqrt{x} + 2) \times (x - 3) }{ \sqrt{x} - 2 }[/tex]
[tex]\displaystyle\lim_{x \to 4} \: - \sqrt{x} x - 3 \sqrt{x} - 2x + 6[/tex]
[tex] = - \sqrt{4} \times 4 - 3 \sqrt{4} - 2 \times 4 - 6[/tex]
[tex] = - 28[/tex]
..
Nomor 5
lim x → 5
(d/dx(2x - 10))/(d/dx(√[x+4] - 3)
(2 - 0)/(d/dx(√[x+4]) - d/dx(3))
(2)/(1/(2√[x+4] - 0)
(2)/(1/2√[x+4]
(2 × 2√[x+4]/1)
(4√[x+4])
= 4√(5 + 4)
= 4√9
= 4.3
= 12
..
[tex]\begin{array}{lr}\texttt{Rate 1.0 Jika Kalian Iri dengan}\\\\ \texttt{Yang Mulia Maharaja Danial Alf'at}\end{array}[/tex] ☝️
[tex]\boxed{\colorbox{ccddff}{Answered by Danial Alf'at | 20 - 03 - 2023}}[/tex]