Based on the given picture, it’s known that:
Hence:
TQ = QS × sin(∠QST)⇒ TQ = 25 × sin(60°)⇒ TQ = 25 × ½√3
PT = TQ / tan(∠QPT)⇒ PT = TQ / tan(90°–(90°–∠SQT))⇒ PT = TQ / tan(∠SQT)⇒ PT = TQ / tan(90°–∠QST)⇒ PT = TQ / tan(90°–60°)⇒ PT = TQ / tan(30°) ∴ [ ∠QPT = 30° ]⇒ PT = TQ × cot(30°)⇒ PT = (25√3)/2 × cos(30°) / sin(30°)⇒ PT = (25√3)/2 × ½√3 / ½⇒ PT = (25√3)/2 × √3⇒ PT = 75/2 cm
PR = PQ + QR⇒ PR = PQ + QS [ because ∠QSR = ∠QRS = 45° ]⇒ PR = [TQ / sin(∠QPT)] + QS⇒ PR = [(25√3)/2 / sin(30°)] + 25⇒ PR = [(25√3)/2 / ½)] + 25⇒ PR = [(25√3)/2 × 2)] + 25
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Explanation
Right-Angled Triangle (Right Triangle)
Based on the given picture, it’s known that:
Hence:
TQ = QS × sin(∠QST)
⇒ TQ = 25 × sin(60°)
⇒ TQ = 25 × ½√3
PT = TQ / tan(∠QPT)
⇒ PT = TQ / tan(90°–(90°–∠SQT))
⇒ PT = TQ / tan(∠SQT)
⇒ PT = TQ / tan(90°–∠QST)
⇒ PT = TQ / tan(90°–60°)
⇒ PT = TQ / tan(30°) ∴ [ ∠QPT = 30° ]
⇒ PT = TQ × cot(30°)
⇒ PT = (25√3)/2 × cos(30°) / sin(30°)
⇒ PT = (25√3)/2 × ½√3 / ½
⇒ PT = (25√3)/2 × √3
⇒ PT = 75/2 cm
PR = PQ + QR
⇒ PR = PQ + QS [ because ∠QSR = ∠QRS = 45° ]
⇒ PR = [TQ / sin(∠QPT)] + QS
⇒ PR = [(25√3)/2 / sin(30°)] + 25
⇒ PR = [(25√3)/2 / ½)] + 25
⇒ PR = [(25√3)/2 × 2)] + 25