بِسْـــــــمِ اللّٰهِ الرَّحْمٰنِ الرَّحِيْمِ
..
Tuliskan dalam bentuk bilangan berpangkat:
Salah satu sifat bilangan berpangkat:
[tex]\boxed{ \frac{1}{ {a}^{n} } = {a}^{ - n} }[/tex]
[tex] \frac{1}{625} = \frac{1}{ {5}^{4} } = {5}^{ - 4} [/tex]
[tex] \boxed{ \frac{ {a}^{n} }{ {b}^{n} } = \left( \frac{a}{b} \right)^{n} }[/tex]
[tex] \frac{125}{1000} = \frac{ {5}^{3} }{ {10}^{3} } = ( \frac{5}{10} )^{3} = ( \frac{1}{2}) ^{3} [/tex]
atau
[tex] \frac{125}{1000 } = \frac{125 \div 125}{1000 \div 125} = \frac{1}{8} = \frac{ {1}^{3} }{ {2}^{3} } = {( \frac{1}{2}) }^{3} [/tex]
[tex] \frac{(8a) \times (2a)}{1024} \\ \\= \frac{16 {a}^{2} }{ {32}^{2} } \\ \\ = \frac{ ({4}^{2} ) {a}^{2} }{ {32}^{2} } \\ \\= \left(\frac{4}{32} \right)^{2} \times {a}^{2} \\ \\ = \left(\frac{1}{8} \right)^{2} \times {a}^{2} \\ \\ = \frac{1}{ {8}^{2} } \times {a}^{2} \\ \\= \frac{ {a}^{2} }{ {8}^{2} } \\ \\ =\left(\frac{a}{8} \right)^{2}[/tex]
[tex]0.00000343 \\ = 343 \times {10}^{ - 8} \\ = 34.3 \times {10}^{ - 7} \\ = 3.43 \times {10}^{ - 6} [/tex]
وَاللّٰهُ اَعْلَمُ بِاالصَّوَافَ
Rumus :
1/a = a^-1
a x a = a^(1 + 1) = a^2
0,a = a x 10^-1
(a^a)b = a^(ab)
a^n/b^n = (a/b)^n
0,25 = 25 x 10^-2 = 2,5 x 10^1 x 10^-2 = 2,5 x 10^-1.
3.
a. 1/625 = 1/(25)^2 = 1/(5^2)^2 1/5^4 = 5^-4.
b. 125/1000 = (5/10)^3 = (1/2)^3 = (2^-1)^3 = 2^-3.
c. 8a x 2a / 1024 = 16a^2/1024 = a^2/64 = a^2/8^2 = (a/8)^2.
d. 0,00000343 = 343 x 10^-8 = 3,43 x 10^-6.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
بِسْـــــــمِ اللّٰهِ الرَّحْمٰنِ الرَّحِيْمِ
..
Tuliskan dalam bentuk bilangan berpangkat:
Pembahasan
Nomor 1
Salah satu sifat bilangan berpangkat:
[tex]\boxed{ \frac{1}{ {a}^{n} } = {a}^{ - n} }[/tex]
[tex] \frac{1}{625} = \frac{1}{ {5}^{4} } = {5}^{ - 4} [/tex]
Nomor 2
Salah satu sifat bilangan berpangkat:
[tex] \boxed{ \frac{ {a}^{n} }{ {b}^{n} } = \left( \frac{a}{b} \right)^{n} }[/tex]
[tex] \frac{125}{1000} = \frac{ {5}^{3} }{ {10}^{3} } = ( \frac{5}{10} )^{3} = ( \frac{1}{2}) ^{3} [/tex]
atau
[tex] \frac{125}{1000 } = \frac{125 \div 125}{1000 \div 125} = \frac{1}{8} = \frac{ {1}^{3} }{ {2}^{3} } = {( \frac{1}{2}) }^{3} [/tex]
Nomor 3
[tex] \frac{(8a) \times (2a)}{1024} \\ \\= \frac{16 {a}^{2} }{ {32}^{2} } \\ \\ = \frac{ ({4}^{2} ) {a}^{2} }{ {32}^{2} } \\ \\= \left(\frac{4}{32} \right)^{2} \times {a}^{2} \\ \\ = \left(\frac{1}{8} \right)^{2} \times {a}^{2} \\ \\ = \frac{1}{ {8}^{2} } \times {a}^{2} \\ \\= \frac{ {a}^{2} }{ {8}^{2} } \\ \\ =\left(\frac{a}{8} \right)^{2}[/tex]
Nomor 4
[tex]0.00000343 \\ = 343 \times {10}^{ - 8} \\ = 34.3 \times {10}^{ - 7} \\ = 3.43 \times {10}^{ - 6} [/tex]
..
وَاللّٰهُ اَعْلَمُ بِاالصَّوَافَ
Rumus :
1/a = a^-1
a x a = a^(1 + 1) = a^2
0,a = a x 10^-1
(a^a)b = a^(ab)
a^n/b^n = (a/b)^n
0,25 = 25 x 10^-2 = 2,5 x 10^1 x 10^-2 = 2,5 x 10^-1.
3.
a. 1/625 = 1/(25)^2 = 1/(5^2)^2 1/5^4 = 5^-4.
b. 125/1000 = (5/10)^3 = (1/2)^3 = (2^-1)^3 = 2^-3.
c. 8a x 2a / 1024 = 16a^2/1024 = a^2/64 = a^2/8^2 = (a/8)^2.
d. 0,00000343 = 343 x 10^-8 = 3,43 x 10^-6.