Jawab:
Penjelasan dengan langkah-langkah:
invers fungsi trigonometri
cos a = y maka a = cos⁻¹ (y)
1. cos⁻¹ (-1/2) = a
cos a = - 1/2 = - cos π/3 = cos ( π - π/3)
cos a = cos (2π/3)
a = 2π/3
.
2. cos⁻¹(1/2) - cos⁻¹ (√2/2 ) + cos⁻¹ (√3 /2) =
cos 60 = 1/2
cos 45 = 1/2 √2
cos 30 = 1/2 √3
= 60 - 45 + 30
= 45 = π/4
3. cos⁻¹(0) - cos⁻¹ (1/2) - cos⁻¹(√3/2) =
cos 90 = 0
= 90 - 60 - 30
= 0
4. tan (cos⁻¹ (4/5)}=
a = cos⁻¹ (4/5)
cos a = 4/5
tan a = 3/4
tan (cos⁻¹ (4/5)}= tan a = 3/4
5. sin ( cos⁻¹ (5/13)}=
a = (cos⁻¹ (5/13)
cos a = 5/13
sin a = 12/13
sin (cos⁻¹ (5/13)}= sin a = 12/13
6. cosec { cos⁻¹ ( -1) } =
a= cos⁻¹ ( -1)
cos a = -1 = cos 180
a= 180
cosec a = 1/sin a = 1/sin 180 = 1/0 = ~
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Jawab:
Penjelasan dengan langkah-langkah:
Jawab:
invers fungsi trigonometri
cos a = y maka a = cos⁻¹ (y)
Penjelasan dengan langkah-langkah:
1. cos⁻¹ (-1/2) = a
cos a = - 1/2 = - cos π/3 = cos ( π - π/3)
cos a = cos (2π/3)
a = 2π/3
.
2. cos⁻¹(1/2) - cos⁻¹ (√2/2 ) + cos⁻¹ (√3 /2) =
cos 60 = 1/2
cos 45 = 1/2 √2
cos 30 = 1/2 √3
= 60 - 45 + 30
= 45 = π/4
.
3. cos⁻¹(0) - cos⁻¹ (1/2) - cos⁻¹(√3/2) =
cos 90 = 0
cos 60 = 1/2
cos 30 = 1/2 √3
= 90 - 60 - 30
= 0
.
4. tan (cos⁻¹ (4/5)}=
a = cos⁻¹ (4/5)
cos a = 4/5
tan a = 3/4
tan (cos⁻¹ (4/5)}= tan a = 3/4
.
5. sin ( cos⁻¹ (5/13)}=
a = (cos⁻¹ (5/13)
cos a = 5/13
sin a = 12/13
sin (cos⁻¹ (5/13)}= sin a = 12/13
.
6. cosec { cos⁻¹ ( -1) } =
a= cos⁻¹ ( -1)
cos a = -1 = cos 180
a= 180
cosec a = 1/sin a = 1/sin 180 = 1/0 = ~