[tex] {3}^{5 - x} = 81[/tex]
[tex] {3}^{5 - x} = {3}^{4} [/tex]
[tex]5 - x = 4[/tex]
[tex] - x + 5 = 4[/tex]
[tex] - x + 5 - 5 = 4 - 5[/tex]
[tex] - x = - 1[/tex]
[tex] \frac{ - x}{ - 1} = \frac{ - 1}{ - 1} [/tex]
[tex]x = 1[/tex]
[tex] {27}^{x + 2} = {81}^{3 - x} [/tex]
[tex] {3}^{3(x + 2)} = {3}^{4(3 - x)} [/tex]
[tex] {3}^{3(x + 2)} = {3}^{4( - x + 3)} [/tex]
[tex] {3}^{3x +6 } = {3}^{ - 4x + 12} [/tex]
[tex]3x + 6 = - 4x + 12[/tex]
[tex]3x + 6 - 6 = - 4x + 12 - 6[/tex]
[tex]3x = - 4x + 6[/tex]
[tex]3x + 4x = - 4x + 6 + 4x[/tex]
[tex]7x = 6[/tex]
[tex] \frac{7x}{7} = \frac{6}{7} [/tex]
[tex]x = \frac{6}{7} [/tex]
[tex] \sqrt{0. {1}^{x + 3} } = \sqrt{0.00 {1}^{4 - x} } [/tex]
[tex] \sqrt{ {( \frac{1}{10}) }^{x + 3} } = \sqrt{{( \frac{1}{1000})}^{4 - x} } = [/tex]
[tex] {( \frac{1}{10} )}^{ \frac{1}{2}(x + 3) } = {( \frac{1}{1000} )}^{ \frac{1}{2}(4 - x) } [/tex]
[tex]{( \frac{1}{10} ) }^{ \frac{x + 3}{2} } = {( \frac{1}{1000}) }^{ \frac{4 - x}{2} } [/tex]
[tex] {( \frac{1}{10}) }^{ \frac{x + 3}{2} } = {( \frac{1}{ {10}^{3} } )}^{ \frac{4 - x}{2} } [/tex]
[tex] {10}^{ - 1( \frac{x + 3}{2}) } = {10}^{ - 3( \frac{4 - x}{2} )} [/tex]
[tex] {10}^{ - ( \frac{x + 3}{2} )} = {10}^{ - 3( \frac{4 - x}{2}) } [/tex]
[tex] {10}^{ - \frac{x + 3}{2} } = {10}^ { - \frac{ 3(4 - x)}{2} } [/tex]
[tex] {10}^{ - \frac{x + 3}{2} } = {10}^{ - \frac{12 - 3x}{2} } [/tex]
[tex] - \frac{x + 3}{2} = - \frac{12 - 3x}{2} [/tex]
[tex]x + 3 = 12 - 3x[/tex]
[tex]x + 3 = - 3x + 12[/tex]
[tex]x + 3 - 3 = - 3x + 12 - 3[/tex]
[tex]x = - 3x + 9[/tex]
[tex]x + 3x = - 3x + 9 + 3x[/tex]
[tex]4x = 9[/tex]
[tex] \frac{4x}{4} = \frac{9}{4} [/tex]
[tex]x = \frac{9}{4} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
7
[tex] {3}^{5 - x} = 81[/tex]
[tex] {3}^{5 - x} = {3}^{4} [/tex]
[tex]5 - x = 4[/tex]
[tex] - x + 5 = 4[/tex]
[tex] - x + 5 - 5 = 4 - 5[/tex]
[tex] - x = - 1[/tex]
[tex] \frac{ - x}{ - 1} = \frac{ - 1}{ - 1} [/tex]
[tex]x = 1[/tex]
8
[tex] {27}^{x + 2} = {81}^{3 - x} [/tex]
[tex] {3}^{3(x + 2)} = {3}^{4(3 - x)} [/tex]
[tex] {3}^{3(x + 2)} = {3}^{4( - x + 3)} [/tex]
[tex] {3}^{3x +6 } = {3}^{ - 4x + 12} [/tex]
[tex]3x + 6 = - 4x + 12[/tex]
[tex]3x + 6 - 6 = - 4x + 12 - 6[/tex]
[tex]3x = - 4x + 6[/tex]
[tex]3x + 4x = - 4x + 6 + 4x[/tex]
[tex]7x = 6[/tex]
[tex] \frac{7x}{7} = \frac{6}{7} [/tex]
[tex]x = \frac{6}{7} [/tex]
9
[tex] \sqrt{0. {1}^{x + 3} } = \sqrt{0.00 {1}^{4 - x} } [/tex]
[tex] \sqrt{ {( \frac{1}{10}) }^{x + 3} } = \sqrt{{( \frac{1}{1000})}^{4 - x} } = [/tex]
[tex] {( \frac{1}{10} )}^{ \frac{1}{2}(x + 3) } = {( \frac{1}{1000} )}^{ \frac{1}{2}(4 - x) } [/tex]
[tex]{( \frac{1}{10} ) }^{ \frac{x + 3}{2} } = {( \frac{1}{1000}) }^{ \frac{4 - x}{2} } [/tex]
[tex] {( \frac{1}{10}) }^{ \frac{x + 3}{2} } = {( \frac{1}{ {10}^{3} } )}^{ \frac{4 - x}{2} } [/tex]
[tex] {10}^{ - 1( \frac{x + 3}{2}) } = {10}^{ - 3( \frac{4 - x}{2} )} [/tex]
[tex] {10}^{ - ( \frac{x + 3}{2} )} = {10}^{ - 3( \frac{4 - x}{2}) } [/tex]
[tex] {10}^{ - \frac{x + 3}{2} } = {10}^ { - \frac{ 3(4 - x)}{2} } [/tex]
[tex] {10}^{ - \frac{x + 3}{2} } = {10}^{ - \frac{12 - 3x}{2} } [/tex]
[tex] - \frac{x + 3}{2} = - \frac{12 - 3x}{2} [/tex]
[tex]x + 3 = 12 - 3x[/tex]
[tex]x + 3 = - 3x + 12[/tex]
[tex]x + 3 - 3 = - 3x + 12 - 3[/tex]
[tex]x = - 3x + 9[/tex]
[tex]x + 3x = - 3x + 9 + 3x[/tex]
[tex]4x = 9[/tex]
[tex] \frac{4x}{4} = \frac{9}{4} [/tex]
[tex]x = \frac{9}{4} [/tex]