[tex]\sf \int\limits^{3}_{1} {(3x^{2} -15x-18)} \, dx \\\\= \frac{3}{2+1}x^{2+1} -\frac{15}{1+1} x^{1+1} -18x \left \{ {{3} \atop {1}} \right.\\\\= x^{3} -\frac{15}{2} x^{2} -18x \left \{ {{3} \atop {1}} \right.\\\\=\left( 3^{3} -\frac{15}{2} (3^{2}) -18(3) \right) -\left( 1^{3} -\frac{15}{2} (1^{2}) -18(1) \right) \\\\=\left( 27 -\frac{135}{2} -54 \right) -\left( 1 -\frac{15}{2} -18 \right) \\\\=27 -67,5 -54 -1 +7,5+18\\\\=\boxed{\sf -70}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Integral Tentu
[tex]\sf \int\limits^{3}_{1} {(3x^{2} -15x-18)} \, dx \\\\= \frac{3}{2+1}x^{2+1} -\frac{15}{1+1} x^{1+1} -18x \left \{ {{3} \atop {1}} \right.\\\\= x^{3} -\frac{15}{2} x^{2} -18x \left \{ {{3} \atop {1}} \right.\\\\=\left( 3^{3} -\frac{15}{2} (3^{2}) -18(3) \right) -\left( 1^{3} -\frac{15}{2} (1^{2}) -18(1) \right) \\\\=\left( 27 -\frac{135}{2} -54 \right) -\left( 1 -\frac{15}{2} -18 \right) \\\\=27 -67,5 -54 -1 +7,5+18\\\\=\boxed{\sf -70}[/tex]